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ABSTRACT
With the emergence of affordable cloud services, users are
currently moving data to external services providers. Hence,
they implicitly trust providers to not abuse or “lose” sensi-
tive data. To protect this data in the context of cloud com-
puting, the use of Order-Preserving Encryption (OPE) has
been suggested to encrypt data while still allowing efficient
queries. The reference approach builds on Order-Preserving
Functions (OPFs) drawn uniformly at random: the so-called
“ideal object”. However, recent results question the suit-
ability of this construction, as its security properties turn
out to be poor. In this article, we investigate possible al-
ternatives. For this, we introduce two descriptive metrics
rating one-wayness-related properties of OPF construction
schemes, i.e., the ability of an adversary to estimate the
plaintext when given a ciphertext and possible extra infor-
mation. Furthermore, we propose three novel approaches
to draw OPFs and apply the introduced metrics to study
their security features in relation to the “ideal object”. The
results visualize the extent of insecurity caused by using the
“ideal object” and qualify the suitability of the alternative
schemes under different threat scenarios.

Categories and Subject Descriptors
E.3 [Data Encryption]; H.2.7 [Database Management]:
Database Administration —Security, integrity, and protec-
tion

General Terms
Design, Security, Algorithms

Keywords
order-preserving encryption; ideal object; one-wayness;
disclosure-resilience
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1. INTRODUCTION
While traditional cryptographic operations aim at render-

ing structured plaintexts into entirely unstructured cipher-
texts (and potentially vice versa), recent cryptographic re-
search also considers operations where ciphertexts still re-
flect some of the properties of the plaintexts. The topic has
especially been incited by the emergence of cloud comput-
ing services, which provide flexible and cost-efficient access
to infrastructure, platforms, and applications. Nevertheless,
the outsourced data must be protected from unauthorized
access. However, encrypting the data with established al-
gorithms like AES would prevent processing the data, i.e.,
range querying. Such techniques require sorted index infor-
mation, that is the order of plaintexts must be kept among
the respective ciphertexts, a prerequisite that cannot be
achieved with traditional encryption schemes.

In order to address this problem, the use of Order-Pre-
serving Encryption (OPE) has been suggested [2, 5, 9, 1].
A deterministic symmetric OPE scheme is modeled as triple
S = (K, Enc,Dec) [3]. Using a keyK obtained from random-
ized key generation algorithm K, the encryption algorithm
Enc(K, p) = f(p) and its inverse Dec(K, c) = f−1(c) realize
an Order-Preserving Function (OPF) that maps plaintexts
from a domain D to a range R of possible ciphertexts.

While there is general consent that OPE will never achieve
the same level of security as traditional encryption schemes
[1, 3, 12, 10], many possible security features are still not
fully understood. Existing efforts in the analysis of the se-
curity of OPE have primarily been focused on the so-called
“ideal object” [3, 4, 11, 12]. The “ideal object” is a Random
Order-Preserving Function (ROPF), i.e., a strictly monoton-
ically increasing function f : D → R that is chosen uniformly
at random from the sample space OPFD,R =

{
f : D → R |

∀p1, p2 ∈ D : f(p1) < f(p2) ⇔ p1 < p2
}
. It is referred to as

“ideal” since it produces every possible OPF with the same
probability.

As already indicated, OPE schemes may be used in cloud
environments where users are unwilling to fully trust their
service provider. While the resistance against known cipher-
text attacks is an important property in this scenario, also
other aspects must be kept in mind. For example, when
considering location-based services, users should be able to
compare their whereabouts, e.g, using a cloud service. How-
ever, for privacy reasons, it should not be possible to find
their accurate positions. Here, in contrast to the commonly
referred database scenario, three fundamental differences ex-
ist: the attacker may only be able to obtain a limited num-
ber of samples of the entire ciphertext space, malicious users



may be able to obtain some plaintext-ciphertext pairs, and
might even be aware of the full domain.
Keeping in mind the diverse requirements on OPE, this ar-

ticle investigates randomized construction schemes of order-
preserving functions that improve on one-wayness-related
properties of the “ideal object”. In particular, when consid-
ering the functions produced by a specific scheme and an
entry c ∈ R of the ciphertext range, there is a distribution
specifying the probability that entries from the plaintext do-
main D are mapped to c. For the “ideal object”, this relates
to the hypergeometric distribution [3], featuring a dominant
peak at the most likely plaintext (m.l.p.), and disqualifying
most entries of the domain as possible plaintexts. This en-
ables accurate guesses of the plaintext mapped to a given
ciphertext [4]. In this article, we aim for schemes that min-
imize the importance of the m.l.p., increasing the number
of plaintexts that are significant candidates for producing
a ciphertext c. Furthermore, this property should even be
maintained despite the disclosure of a limited number of
ciphertexts or plaintext-ciphertext pairs, as well as in the
presence of chosen plaintext attacks. We refer to schemes
fulfilling these requirements as disclosure-resilient.
Since the “ideal object” is a reference scheme to evaluate

the security of OPE approaches, it does not demand that
the created functions have a compact representation. In
particular, they can be thought of as being stored using
|D| key-value-pairs. In our pursuit of more secure reference
schemes, we will follow the same approach.
Within this article, we make the following contributions:

• We propose three novel schemes to draw OPFs from
OPFD,R, that aim to improve the disclosure-resilience
of OPF-based OPE schemes.

• In order to evaluate the disclosure-resilience of OPE
schemes, we propose the security metrics of the (aver-
age) number of significant plaintexts and the expected
estimation error that a maximum-likelihood attacker
can achieve given a specific number of ciphertexts or
plaintext-ciphertext pairs.

• Finally, we provide an empirical evaluation of the dis-
closure-resilience of our schemes, comparing them to
the “ideal object”. From our evaluation, we can see
that the proposed approaches significantly improve on
the “ideal object” in case of ciphertext-only attacks.

The rest of the article is organized as follows: In Sec-
tion 2, we provide an overview of existing research on OPE.
Section 3 describes our attacker model, as well as our three
novel OPF construction schemes. The metrics for evaluating
the disclosure-resilience of an OPE scheme are introduced in
Section 4. After that, the results of our empirical security
evaluation are discussed in Section 5. Finally, in Section 6,
we conclude the article with an outlook.

2. RELATED WORK
We now provide an overview of related work. For this, we

start with an outline of early ad-hoc realizations and high-
light initial efforts in the security analysis of OPE. Then, we
review known weaknesses of the “ideal object” and discuss
proposed alternatives to OPF-based OPE.

2.1 Early Realizations and the Ideal Object
Several approaches have been suggested to realize OPE.

Some of the initially suggested OPF schemes rely on tra-
ditional encryption techniques to generate intermediate ci-
phertexts, assign them to buckets based on the order of their
underlying plaintexts, and prepend bucket identifiers to ob-
tain resulting ciphertexts [4, 5, 6]. Thus, with the bucket
identifiers, ciphertexts can be compared, allowing efficient
range queries. Varying the bucket size, these schemes pro-
vide trade-offs between the potential risk of plaintext ex-
posure and the query performance, which may suffer from
a large number of false positives in the results of encrypted
queries. Nevertheless, while these approaches provide viable
solutions for some outsourced database applications, they
cannot be securely employed if the domain is known to ad-
versaries. With attackers being aware of the domain, bucket
identifiers can already reveal the underlying plaintexts of the
given ciphertexts (depending on the bucket size). Therefore,
instead of grouping the underlying plaintexts, OPE schemes
have to obfuscate the mapping between plain- and cipher-
texts in most use cases – for both security and performance.

Apart from bucketing techniques, the summation of ran-
dom numbers [2], as well as the use of polynomial functions
[9] have been suggested for integer domains and ranges.

While these approaches produce OPFs from specific sub-
classes of OPFD,R, Agrawal et al. [1] were the first to uni-
formly draw OPFs from the complete set of OPFD,R. In
particular, M = |D| numbers are drawn uniformly at ran-
dom from R = {1, . . . , N}. Then, these ciphertexts are
sorted in ascending order, resulting in a sequence c1, . . . , cM .
The encryption function f(p) is defined as f(i) := ci for
all 1 ≤ i ≤ M . Accordingly, the decryption function is
f−1(ci) = i for all 1 ≤ i ≤ M .

Later, this approach was analyzed by [3] and termed as
the “ideal object”. To evaluate the security features of OPE,
researchers have considered existing, as well as novel secu-
rity notions. We now outline existing security analyses of
the “ideal object”, as well as weaknesses that have been dis-
covered.

2.2 Weaknesses of the Ideal Object
The initial analysis of the security of the “ideal object”

focused on Indistinguishability under Ordered Chosen-Plain-
text Attack (IND-OCPA), which is a natural adaptation of
the notion of Indistinguishability under Chosen-Plaintext At-
tack (IND-CPA) to OPE [3]. The basic idea behind this
notion is that an adversary must not be able to distinguish
which one of two chosen plaintexts has been encrypted by
the left-right oracle LR. It is easy to see that this notion
is not directly applicable to OPE as ciphertexts leak the or-
der of plaintexts. Therefore, Boldyreva et al. introduce the
weakened notion of IND-OCPA, where an attacker is allowed
to only present pairs (p10, p

1
1), . . . , (p

q
0, p

q
1) of plaintexts to the

LR oracle such that pi0 < pj0 ⇐⇒ pi1 < pj1 for 1 ≤ i, j ≤ q.
Using a so-called big-jump attack, the authors show that any
OPE scheme can only achieve IND-OCPA if the size of R is
exponential in the size of D.
While a range size that is exponential in the size of the

domain is a necessary condition, it is not sufficient for an
approach to provide IND-OCPA. Accordingly, [12] showed
that the“ideal object” is not even able to achieve IND-OCPA
for |R| being exponential to |D| = 2. In order to emphasize
that the“ideal object”should be considered more carefully in



the analysis of OPE, the authors construct a scheme that is
indeed able to provide IND-OCPA in this case. Finally, the
authors introduce the notion of Indistinguishability under
Ordered and Local Chosen-Plaintext Attack (IND-OLCPA)
as a further weakened version of IND-OCPA that prevents
big-jump attacks by restricting oracle queries to a plaintext
interval being at most polylogarithmic in |R|. They show
that adversaries can achieve higher advantage against the
“ideal object” than against a generalized OPE scheme using
small-jump attacks (see Section 2.3).
With IND-OCPA or IND-OLCPA not being achieved by

the “ideal object”, the expected number of bits zh of a plain-
text that remain secret against a known plaintext attack
is estimated [11]. For ciphertexts of h chosen plaintexts
being disclosed, the authors derive the security bounds of

zh = Θ
(
log |D|−h

h+1

)
for a uniformly-chosen challenge ci-

phertext based on their analysis. They conclude that for
|R| ≥ |D|3 and h = o(|D|ε), where 0 < ε < 1, a ROPF is
able to achieve one-wayness. However, this only applies for
classical one-wayness, i.e., aimed to recover the exact plain-
text of a given ciphertext, not the ability of an adversary to
correctly estimate a plaintext close to the actually underly-
ing plaintext. Therefore, while considering the disclosure of
plaintext-ciphertext pairs, these results are only of limited
use for estimating the impact of disclosure on the ability of
an adversary to infer information about a given ciphertext.
In order to incorporate the ability of an attacker to esti-

mate the underlying plaintext of a ciphertext in the analysis
of the one-wayness of the “ideal object”, the advantage of
an adversary regarding Window One-Wayness (WOW) and
Window Distance One-Wayness (WDOW) has been consid-
ered in [4]. Here, given a challenge set of z uniformly-chosen
ciphertexts, the advantage of an attacker is the ability to
correctly guess a window of size r in which at least one of
the underlying plaintexts respectively at least one of the
distances between two plaintexts of the given ciphertexts is
within. Considering the advantage of an adversary in deter-
mining a relevant plaintext interval instead of an exact plain-
text, these notions provide a more generalized version of one-
wayness that incorporates the fuzziness of information leak-
age. In their work, the authors show that, given z challenge
ciphertexts and the smallest possible window size of r = 1,
the “ideal object” is able to provide WOW and WDOW.
However, for larger windows of size r ≈ z/

√|D|, the “ideal
object”does not achieve WOW or WDOW. Although, aside
from the disclosure of challenge ciphertexts, the authors con-
sider the disclosure of a few plaintext-ciphertext pairs, they
only provide a rough suggestion for the size of the range
|R| ≥ 7 |D| for their analysis to hold in this case. Hence,
it remains uncertain how the increasing disclosure of infor-
mation will affect the accuracy of the estimation that an
attacker is able to achieve.
To obtain a concept involving one-wayness, partial in-

distinguishability, and information disclosure properties, [7]
only recently introduced (X , θ, q)-indistinguishability. Here,
an adversary is presented plaintexts m∗1,m

∗
2 which satisfy

|m∗1 −m∗2| ≤ θ together with q observed plaintext-ciphertext-
pairs whose plaintexts were sampled using distributions X =
(Xi)i=1..q. Furthermore, it is given a ciphertext resulting
from the encryption of either m∗1 or m∗2 with probability
1/2. The attacker’s advantage measures its ability to cor-
rectly guess whether m∗1 or m∗2 was chosen.

The authors propose a novel OPE scheme, that is able
to provide indistinguishability of plaintexts m∗1,m

∗
2 differing

only in their �log θ� lower-order bits. Additionally, they note
that this concept can be seen as a generalization of WOW.

In summary, existing research has shown that the “ideal
object” is not the most secure way of realizing OPE. Fur-
thermore, a number of general limitations in the security of
OPE schemes have been identified. So, it is a necessary con-
dition that |R| is exponential in |D| to achieve IND-OCPA.
Higher-order plaintext bits are exposed, while a limited num-
ber of lower-order bits can be made indistinguishable when
choosing an appropriate scheme. In the following, we will
further concentrate on improving one-wayness and disclosure-
resilience properties. Therefore, we propose alternative ap-
proaches for drawing functions from OPFD,R in order to
lower the probability of successfully guessing a plaintext (or
a set of plaintexts) whose encryption creates (respectively
contains) a given ciphertext.

2.3 Alternative Realizations of OPE
Before we describe the details of our schemes in Section 3,

we first provide an overview of related work that addressed
the weaknesses of the“ideal object”by proposing alternative
realizations of OPE.

MOPE. In order to improve the security features of the
“ideal object”, Boldyreva, Chenette, and O’Neill propose a
Modular Order-Preserving Encryption (MOPE) scheme [4].
The approach is no longer strictly order-preserving – instead,
by prepending a random secret shift to the plaintexts, a
modular order is established among the ciphertexts. The
modular encryption function for a plaintext p is defined as
Enc�(K, j, p) = Enc(K, p− j mod |D|), where j is the secret
random offset. Accordingly, a ciphertext c is decrypted by
Dec�(K, j, c) = Dec(K, c + j mod |D|). This simple modifi-
cation allows the resulting scheme to achieve optimal WOW
security, while WDOW security is equivalent to the security
provided by the employed OPE scheme, e.g., the “ideal ob-
ject”. Nevertheless, once a single plaintext-ciphertext pair
has been disclosed, the security of MOPE is also reduced to
the level of security provided by the underlying OPE scheme.
Thus, the security gain does usually not justify the deficits
of not being able to use standard database queries.

Index Tagging Schemes. Boldyreva, Chenette, and
O’Neill suggest an alternative realization of OPE for static
and pre-determined domains, called Committed Efficient Or-
derable Encryption (CEOE) [4]. In order to analyze this
scheme, the authors suggest the notion of Indistinguishabil-
ity under Committed Chosen-Plaintext Attack (IND-CCPA).
Here, similar to IND-OCPA, an adversary chooses two chal-
lenge vectors of the same size and order before key gen-
eration, allowing the key generation algorithm to consider
them as input. Then, the advantage of an adversary is de-
fined by the ability to correctly guess whether it is given
encryptions of the first or second challenge vector. In their
work, the authors propose a combination of traditional en-
cryption and an index tagging scheme that uses a key and
the domain as input, and constructs a monotone minimal
perfect hash function that maps the i-th largest plaintext
of the domain to the tag value i. As indicated, this scheme
provides IND-CCPA, but it requires that the domain is not
known to the attacker. Otherwise, it is able to infer the un-
derlying plaintext from the index tag, which is part of the
ciphertext.



A different tagging scheme is Mutable Order-Preserving
Encoding (mOPE) [10] that is based on a mutable search tree
storing the index information. While the scheme enables the
use of variable domains, security relevant restrictions – like
the domain being unknown to the attacker – remain.
GOPE. Motivated by the weaknesses of the “ideal ob-

ject”, Xiao and Yen propose a generalized approach [12],
called Generalized Order-Preserving Encryption (GOPE).
Here, a key is defined as {π, rpp′ | 1 ≤ p < p′ ≤ |D|}, where
rpp′ ∈ Z3 is randomly generated for 1 ≤ p < p′ ≤ |D|.
Furthermore, π is a permutation of the set of all possible
comparisons among plaintexts {(x, x′) | 1 ≤ x < x′ ≤ |D|}.
For a plaintext p, the corresponding ciphertext c is defined
as {(π(p′, p), rpp′)) | p′ < p} ∪ {(π(p, p′), 1 + rpp′) | p′ > p}.
Hence, a ciphertext contains |D| − 1 elements which allows
to compare Enc(p) to all other ciphertexts. Accordingly, in
order to compare two ciphertexts c and c′, they are first
tested for equality, returning “=” if c = c′. Otherwise, the
algorithm retrieves the two distinct elements with match-
ing i = π(p, p′) from the ciphertexts, i.e., (i, s) from c and
(i, s′) from c′. Then, it returns “<” if s − s′ = 1 or “>” if
s − s′ = 2. Finally, in order to decrypt a ciphertext c, two
elements (i, s) and (i′, s′) are retrieved from its set. The un-
derlying plaintext is the element p which appears in π−1(i)
as well as π−1(i′). The authors show that GOPE is able to
provide both IND-OCPA and IND-OLCPA and can there-
fore be considered as a secure scheme for OPE.
Compared to OPF-based OPE, this approach has some

disadvantages concerning its practical application. First,
it does not provide a continuous numeric ciphertext space,
which may be a necessary property for an easy adaption of
existing database systems and the underlying implementa-
tion of index structures to handle ciphertexts produced by
GOPE. Second, in GOPE, the comparison operation is more
complex since it requires the lookup of a matching pair in the
sets of both ciphertexts. This may restrict the applicability
of GOPE when extending cloud computing services relying
on large-scale database systems with OPE. Finally, GOPE
requires l = O(�log2 |D|� · (|D|− 1)) bits to encode a cipher-
text. Accordingly, the practical applicability of GOPE is
limited to extremely small domain sizes.

3. OPF CONSTRUCTION SCHEMES
Using the “ideal object”, each OPF has the same proba-

bility of being chosen for encryption. This, however, leads
to a hypergeometric distribution of the underlying plain-
texts for each ciphertext, yielding a very dominant peak,
i.e., a very probable m.l.p., along the diagonal of domain
and range [3, 4]. Therefore, instead of choosing functions
uniformly from OPFD,R, we use construction schemes that
have different probabilities of drawing the different OPFs.
By preferring functions that are not assigning plaintexts to
ciphertexts close to the diagonal, we achieve a distribution
of the underlying plaintexts that is closer to uniform.

3.1 Attacker Model and Design Goals
Similar to the notion of one-wayness, we consider an ad-

versary trying to estimate the plaintext responsible for pro-
ducing an observed ciphertext. For this, it has knowledge
of the OPF construction scheme and possibly a set of pre-
viously observed ciphertexts or plaintext-ciphertext pairs.
Additionally, we study the case where the adversary is al-

lowed to see the ciphertexts of a set of chosen plaintexts
before being presented the challenge ciphertext to decrypt.

For attacks considering the disclosure of information, the
general assumption in the literature is that plaintexts are
picked uniformly at random from D and that all cipher-
texts and plaintext-ciphertext pairs have the same probabil-
ity of being disclosed to an attacker [3, 4, 11, 12]. While
we follow this assumption for plaintexts, we argue that the
probability for a ciphertext or plaintext-ciphertext pair to
be disclosed not only depends on the distribution of plain-
texts, but also on the probability of a specific ciphertext or
plaintext-ciphertext pair of being produced by the chosen
OPFs. Therefore, in our attacker model, the probability
that a ciphertext or plaintext-ciphertext pair is observed by
an attacker depends on the probability that the OPFs cho-
sen by the used construction scheme contain a respective
plaintext-ciphertext mapping.

An OPF construction scheme should ideally be able to
return OPFs f in such a way, that, given any challenge ci-
phertext c, all potential plaintexts p have approximately the
same probability of satisfying f(p) = c (if c lies in an inter-
val of size |D| at the edge of R, some plaintexts cannot
produce c). In this article, a construction scheme with this
property is called disclosure-resilient. Considering all func-
tions produced by the scheme, the property enforces that a
high number of plaintexts is mapped to any given ciphertext
(with significant probability). Hence, it prevents adversaries
from accurately guessing respective plaintexts. This condi-
tion should also hold for adversaries acquiring additional
knowledge before making their guess. Here, we consider
the (random) observation of a limited set of ciphertexts or
plaintext-ciphertext pairs, as well as the ability to query the
ciphertext of a limited number of choosen plaintexts. Al-
though this additional information reduces the number of
potentially underlying plaintexts of a challenge ciphertext,
their probability of having been assigned to this ciphertext
should still be distributed as uniformly as possible over the
remaining subspaces.

3.2 Random Offset Addition
Our first approach for constructing OPFs, called random

offset addition, generalizes the scheme proposed by Xiao,
Yen, and Huynh [12]. In their scheme, which is defined for
D = {1, 2}, the plaintext 1 is encrypted to a random element
r ∈ [1, N − 1] while 2 is always assigned to r + 1. Since the
authors only use this approach to show that the “ideal ob-
ject” is not the most secure OPE scheme, we provide a sim-
ple extension for an arbitrary M = |D| here. Accordingly,
in our scheme, an OPF is constructed by first choosing a
random offset r ∈ [1, N −M + 1]. Then, for each plaintext
p, the corresponding ciphertext is given by the encryption
function f(p) = p+ r.

When an OPF is generated by the random offset addition
approach, each ciphertext c is produced by all possibly re-
sponsible plaintexts p ∈ [max(1,M+c−N),min(c,M)] with
equal probability. This property gives random offset ad-
dition near-optimal disclosure-resilience in situations when
only the challenge ciphertext is known to an adversary. How-
ever, as soon as further information is available, its security
properties break down. Once a single plaintext-ciphertext
pair has been disclosed, an attacker learns about the random
offset r and is hence able to decrypt all ciphertexts. Further-
more, with an increasing number of known ciphertexts, an



attacker is able to narrow down the potential range used by
the OPF, eventually allowing her to reverse the encryption
by inferring unknown ciphertexts between the known ones.
Additionally, the use of domains |D| > 2 breaks security un-
der IND-OCPA, since the fixed ciphertext differences allow
to distinguish the ciphertexts resulting from oracle query
(1, 1), (2,M).
Despite these vulnerabilities against informed adversaries,

studying the random offset addition approach provides inter-
esting reference values for the possible disclosure-resilience
in uninformed scenarios.

3.3 Random Uniform Sampling
To obtain an OPF construction scheme that is more re-

silient against attacks based on further knowledge, we pro-
pose to study the random uniform sampling algorithm shown
in Alg. 1. Its concept is similar to that of the NHGD scheme
proposed in [3]. However, instead of choosing ciphertexts
based on a negative hypergeometric distribution (hence em-
ulating the“ideal object”), it relies on a uniform distribution
to prevent the formation of dominant peaks.

Algorithm 1 Random Uniform Sampling

1: function rand-unif-sample(M , N)
2: f ← {}
3: sample(f , 1, M , 1, N)
4: return f
5: end function

6: procedure sample(f , dmin, dmax, rmin, rmax)

7: p
$←− [dmin, dmax] � select random splitting element

8: mS ← p− dmin � number of plaintexts p′ < p
9: mL ← dmax − p � number of plaintexts p′ > p

10: c
$←− [rmin +mS , rmax −mL] � randomly select c

11: f ← f ∪ {(p, c)} � add (p, c) to OPF f

12: � recursively sample lower subspace
13: if p > dmin then
14: sample(f , dmin, p− 1, rmin, c− 1)
15: end if

16: � recursively sample upper subspace
17: if p < dmax then
18: sample(f , p+ 1, dmax, c+ 1, rmax)
19: end if
20: end procedure

In this approach, the rand-unif-sample procedure ini-
tializes the OPF f with {} and invokes the initial call to
sample with f , the minimum and maximum element of D
(dmin = 1 and dmax = M), as well as the minimum and
maximum element of R (rmin = 1 and rmax = N). The
sample function picks a plaintext p from [dmin, dmax] as
splitting element (line 7). Here, we distinguish between two
splitting strategies, namely choosing p uniformly at random
as shown in Alg. 1, or using the median, i.e., the middle
element of [dmin, dmax] (or one of the two middle elements
chosen uniformly at random in case of an even number of
plaintexts). Having selected p, a respective ciphertext c is
chosen uniformly at random from [rmin +mS , rmax −mL],
where mS = p−dmin and mL = dmax−p are the numbers of
plaintexts smaller and larger than p. The resulting pair (p, c)

is added to f (line 11), dividing both the domain and the
range into subspaces. In particular, the lower subspace has
domain [dmin, p−1] and range [rmin, c−1], whereas the up-
per subspace has domain [p+1, dmax] and range [c+1, rmax].
Each subspace with non-empty domain is then recursively
sampled using the sample function (lines 14 and 18). Once
all calls to sample are finished and therefore all plaintexts
have been assigned to a ciphertext, rand-unif-sample re-
turns f .

Note that using an argument as applied in [12], it is possi-
ble to show that for |D| = 2, the random uniform sampling
scheme does not achieve the same level of IND-OCPA as the
random offset addition approach.

3.4 Random Subrange Selection
Our third approach, referred to as random subrange se-

lection, builds on drawing an OPF from a randomly chosen
subrange N ′ of the original range N . For the actual sam-
pling of an OPF from this subrange, an alternative OPF con-
struction scheme is used. Although the OPFs constructed
with a specific subrange N ′ may still feature specific most
likely plaintexts for each ciphertext, the randomization step
spreads the most likely plaintexts of the subranges over the
full domain. Hence, this reduces the overall probability of
the most likely plaintexts of each ciphertext. Accordingly,
the subrange selection scheme performs the following steps
to construct an OPF:

1. Randomly decide whether to choose a lower bound or
an upper bound first.

2. According to the previous choice, select the upper and
lower bounds uniformly at random as follows:

a) If a lower bound is to be chosen first, draw the lower
bound rmin ∈ [1, N−M+1]. Then, draw the upper
bound rmax ∈ [rmin +M − 1, N ].

b) Otherwise, draw the upper bound rmax ∈ [M,N ]
and the lower bound rmin ∈ [1, rmax −M + 1].

3. Sample an OPF from the domain [1,M ] and the range
[1, rmax − rmin + 1] using an alternative construction
scheme. In this work, we consider two such schemes,
namely the “ideal object” and the random uniform
sampling scheme proposed in Section 3.3.

4. Finally, adjust the range of the obtained OPF by adding
rmin − 1 to all ciphertexts and return the resulting
function.

Note, that the expected size of the used subrange remains
linear in N . Furthermore, the expected subrange interval
lies symmetrically around N+1

2
. For |D| = 2, this reduces

the IND-OCPA properties of the random subrange selection
approach to that of the approach used in the subrange. In
particular, it is again possible to adopt the argument given
in [12], to show that for this specific domain size random
offset addition provides a higher level of IND-OCPA than
random subrange selection in combination with the “ideal
object” or a random uniform sampling approach.

4. SECURITY EVALUATION
In order to evaluate the security features of our proposed

OPF construction schemes and to compare them to the



“ideal object”, we first introduce two novel metrics that are
able to assess the attacker’s ability of accurately guessing
the underlying plaintexts of ciphertexts.

4.1 Evaluation Metrics
Before we consider the proposed metrics in detail, we first

define the following prerequisites.
Let S be a randomized construction scheme that produces

each order-preserving function f ∈ OPFD,R with probability
Pr(f). Then, the probability of a range element c ∈ R being
a value of the OPF f produced by S is given by:

Pr(c ∈ f(D)) =
∑

f∈OPFD,R
c∈f(D)

Pr(f)

Accordingly, the probability of a pair (p, c) ∈ D×R being a
plaintext-ciphertext pair produced by f is defined as follows:

Pr(f(p)=c) =
∑

f∈OPFD,R
f(p)=c

Pr(f)

4.1.1 Number of Significant Plaintexts
For each α ∈ [0, 1] and c ∈ R, we define the number of

significant plaintexts for ciphertext c and threshold α as a
random variable of value

MS
α (c)=min{|Q| | Q ⊆ D ∧ α≤

∑
p∈Q

Pr(f(p)=c | c ∈ f(D))}

if Pr(c ∈ f(D)) > 0 and of value 0 otherwise. In the first
case, this metric measures the cardinality of the smallest set
of plaintexts which has at least probability α of containing
the plaintext that is mapped to c by a function f randomly
constructed using scheme S. Generally speaking, the higher
the value of MS

α (c), the higher is the disclosure-resilience of
S when considering only ciphertext c.
To obtain a metric summarizing over all ciphertexts, we

use MS
α (c) to define the average number of significant plain-

texts for threshold α as a random variable MS
α :

MS
α :=

1

|D|
∑
c∈R

Pr(c ∈ f(D)) ·MS
α (c)

As mentioned earlier we will empirically estimate MS
α (c)

and MS
α by conducting simulations.

Note, that there is a connection to the concept of r, z-
Window One-Wayness introduced in [4]. Here, an adversary
has to determine a domain interval of size r containing the
plaintext being mapped to one of z randomly chosen cipher-
texts. The advantage of the adversary equals its probability
of success. For z = 1 and presented ciphertext c, the ad-
versary has to return an interval of at least size MS

α (c) to
achieve an advantage of value α. For higher values of z a
similar relationship depends on the question, whether the
presented ciphertexts have disjoint sets of significant plain-
texts. Furthermore, note that the WOW interval size r and
MS

α (c) may significantly differ for multimodal plaintext dis-
tributions with maxima lying far apart. MS

α (c) will better
reflect the behavior of an optimal attacker in this case.

4.1.2 Expected Estimation Error
For most applications of order-preserving functions (e.g.,

geographic locations or account balances), information is

disclosed not only by the exact decryption of a given cipher-
text c, but also if it is possible to estimate a plaintext lying
in a narrow interval around the actual plaintext producing c.
Therefore, we are interested in the expected estimation error
of a maximum-likelihood attacker, estimating the plaintext
mapped to a given ciphertext c by choosing uniformly at
random one element from the set mlpS(c):

mlpS(c) = argmax
p∈D

Pr(f(p) = c)

For the “ideal object”, it is known, that this estimator has
maximum error ofO(

√|D|) with probability arbitrarily close
to one [4]. The expected estimation error the adversary
achieves for ciphertext c and scheme S can be written as:

ES(c) =
∑
p∈D

Pr(f(p) = c) ·

∑
mlp∈mlpS(c)

|mlp− p|

|mlpS(c)|

Weighting this value with the probabilities of actually ob-
serving ciphertext c, we obtain the expected estimation error
of the maximum-likelihood attacker considering scheme S:

ES =
1

|D|
∑
c∈R

Pr(c ∈ f(D)) · ES(c)

Again, when comparing different OPF construction schemes,
a higher value indicates increased disclosure-resilience. In
our evaluation, we will empirically estimate ES(c) and ES

for the considered schemes. Please note that, while the ex-
pected estimation error may provide insight into the estima-
tion accuracy that an adversary may achieve, a maximum-
likelihood estimator does not necessarily present an optimal
attacker model for some cases. For example, given a bimodal
distribution of underlying plaintexts with two maxima, a
maximum-likelihood attacker would have to decide for one
maximum, resulting in a larger estimation error in case of a
poor choice.

4.1.3 Adversaries with Additional Knowledge
As outlined in Section 3.1, we are also interested in the

disclosure-resilience properties of the studied schemes when
the adversary already possesses a limited set of previously
observed ciphertexts or plaintext-ciphertext pairs. Accord-
ingly, given c1, . . . , cz ∈ R or (p1, c1), . . . , (pz, cz) ∈ D × R
together with a metric φ ∈ {MS

α (c),MS
α , ES(c), ES}, we

write φ|c1,...,cz or φ|(p1,c1),...,(pz ,cz) to denote the version
of φ where only OPFs f satisfying c1, . . . , cz ∈ f(D) or
f(p1) = c1, . . . , f(pz) = cz are considered, respectively. In
particular, all involved probabilities are subject to these con-
ditions.

Then, we define the metric φ under the condition of z
known ciphertexts by computing a weighted average over all
possible combinations:

φ|z·c =
1∣∣(D
z

)∣∣
∑

{c1,...,cz}∈(Rz )

Pr(c1, . . . , cz ∈ f(D)) · φ|c1,...,cz

Note, that the individual probabilities Pr(c1, . . . , cz ∈ f(D))
sum up to a value of

∣∣(D
z

)∣∣, which is corrected by a normal-
izing term.



Accordingly, the metric φ under the condition of z known
plaintext-ciphertext pairs is defined as

φ|z·(p,c) =
1∣∣(D
z

)∣∣
∑

P∈(D×R
z )

Pr

⎛
⎝ ∧

(p,c)∈P
f(p) = c

⎞
⎠ · φ|P

4.1.4 The Case of Chosen Plaintexts
Next, we consider the scenario where an adversary is allowed
to see the ciphertexts of z chosen plaintexts before being
presented a challenge ciphertext. Again, let φ ∈ {MS

α , ES}
be one of the metrics defined in Sections 4.1.1 and 4.1.2.
Depending on the OPF construction scheme S, the cho-

sen plaintexts p1, . . . , pz are mapped to ciphertexts c′1, . . . , c
′
z

with different probability. Considering the consequences of
all possible mappings, we compute the expected value of φ(c)
for chosen plaintexts p1, . . . , pz and observed challenge c as:

φ(c)|p1,..,pz:=

∑
(c′1,...,c′z)∈Rz

Pr

⎛
⎝ ∧

i∈[1,z]
f(pi) = c′i

∣∣∣∣ c ∈ f(D)

⎞
⎠· φ(c)|(p1,c′1)..(pz ,c′z)

To obtain a metric summarizing over all possible cipher-
texts, we compute the average expected value of φ for chosen
plaintexts p1, . . . , pz as:

φ|p1,...,pz :=
1

|D|
∑
c∈R

Pr(c ∈ f(D)) · φ(c)|p1,...,pz

Since the adversary cannot predict the challenge cipher-
text when choosing plaintexts, she will be tempted to query
a combination p1, . . . , pz which leads to worst-case (i.e., min-
imum) global disclosure-resilience. Therefore, we can adopt
its value as a metric named expected φ under z chosen plain-
texts:

φ|z·p := min
(p1,...,pz)∈Dz

φ|p1,...,pz

Note that for all OPF construction schemes considered in
this paper, the worst-case occurs for the choice of (approx-
imately) equally spaced plaintexts, partitioning the domain
into (approximately) equal parts.

4.2 Simulation Setup
We implemented the “ideal object”, the random offset ad-

dition, the random subrange selection, and both variants
of the random uniform sampling approach in C++ using
the Boost.Random library1 and its Mersenne Twister im-
plementation [8] for pseudo-random number generation.
First, we studied the disclosure-resilience of these schemes

against adversaries without the knowledge of further cipher-
texts or plaintext-ciphertext pairs. For each construction
scheme, we generated 108 OPFs using a domain size of
M = 500 and a range size of N = 5000. While generating
the OPFs, we recorded the frequencies of plaintext-cipher-
text pairs occurring among these functions.
Then, in order to empirically estimate the average number

of significant plaintexts and the expected estimation error,
we generated 108 OPFs for each approach and computed
an estimation of both metrics assuming the prior knowledge
or choice of up to z = 2 ciphertexts, plaintext-ciphertext

1http://www.boost.org/libs/random/

Figure 1: Empirically measured frequency distribu-
tions for specific ciphertexts (108 OPFs).

pairs, and plaintexts, respectively. We varied the domain
size M ∈ {10, 20, 30} and chose a range size of N = M2.
Due to memory constraints and the complexity of comput-
ing φ|z·c, φ|z·(p,c), and φ|z·p, which requires the collection
of the frequency distribution of all occurring ciphertext and
plaintext-ciphertext pair combinations, we were limited in
our evaluation to these rather small domain and range sizes,
as well as to z = 2.



5. RESULTS & DISCUSSION
We now provide an overview and a discussion of the sim-

ulation results.

5.1 Plaintext-Ciphertext Assignments
For the first experiment, we studied the frequency distri-

bution of plaintexts that had been assigned a specific cipher-
text. Fig. 1 shows the measured frequency distributions for
the ciphertexts c = 100 and c = 2500. We chose these two
ciphertexts in order to compare the approaches at the edge
of the domain, where a range element c can only be assigned
to domain elements {p ∈ D | p ≤ c ≤ |R| − (|D| − p)}, as
well as the middle of the range, where these restriction do
not play a role. Accordingly, for c = 100, the distribution
does not cover the full domain as plaintexts p > 100 cannot
be assigned to c = 100. Note furthermore, that, since the
compared approaches may use different ciphertexts with dif-
ferent probabilities, in this plot, the sum of the frequencies
does not have to be equal for different schemes.
As we can see from Fig. 1, the“ideal object”closely follows

a hypergeometric distribution according to [3, 4], yielding a
frequency of over 1.3 · 106 assignments of c = 100 to p = 10
and over 3.7·105 assignments of c = 2500 to p = 250. Hence,
although the absolute frequency reduces for the ciphertext
in the middle of the range, it still shows a prominent peak
compared to our proposed schemes in both situations.
In contrast, the random offset approach has a constant

frequency of about 2 · 104 assignments over the (assigned)
domain both for c = 100 and c = 2500. Both random sub-
range selection schemes only slightly vary between 2 · 104 to
5·104 for c = 100 and about 1.7·104 to 3·104 assignments for
c = 2500. Comparing the approaches, using random uniform
sampling instead of the “ideal object” to draw OPFs from
the subrange yields a more even distribution of ciphertexts.
Finally, the direct application of both random uniform

sampling approaches shows a slightly higher maximum fre-
quency compared to the offset and subrange selection schemes
for c = 100. Despite the presence of a peak at p = 100, the
uniform sampling schemes still show a roughly uniform dis-
tribution over the largest fraction of the usable part of the
domain. For c = 2500, both feature a non-uniform frequency
distribution decreasing towards the edges of the domain.
In addition to the plaintext distributions for two spe-

cific ciphertexts, for the first experiment, we plotted the
measured plaintext-ciphertext assignments over the full do-
main and range. Fig. 2 shows the corresponding heatmaps
obtained from the frequency of plaintext-ciphertext assign-
ments occurring among the generated functions for each ap-
proach. Here, according to the m.l.p. deduced in [4], we see
that the “ideal object” yields a dominant peak of plaintext-
ciphertext assignments along the diagonal of the plot. Fur-
thermore, for the offset addition approach, we can see an
almost perfectly uniform distribution over the domain and
range. While the random subrange selection approaches still
show a slightly higher frequency around the diagonal, they
drastically reduce the height of the peak when compared
to the “ideal object”. For the random uniform sampling
approaches, we see that both schemes yield the tendency
to encrypt small plaintexts to small ciphertexts and large
plaintexts to large ciphertexts. The reason for this may be
the fact that, as soon as a splitting element p is assigned a
ciphertext near the lower (upper) edge of R, the subrange
available to unassigned domain elements p′ < p (p′ > p)

becomes so small that the their ciphertexts have to be very
close to each other. Due to the continued repetition of the
splitting random experiment, it is probable that this case
eventually occurs. Accordingly, for plaintexts from the be-
ginning of D, it is more likely to be a assigned a ciphertext
from the beginning of R, while ciphertexts from the end of
R tend to be assigned to plaintexts from the end of D.

In summary, these results give indication that the pro-
posed schemes are able to improve the security properties
of OPF-based OPE by reducing the probability of the most
likely plaintexts and spreading the distribution of possible
plaintexts over the whole domain.

5.2 Quantifying the Disclosure-Resilience
In order to quantify the improvement of the security prop-

erties of the suggested schemes and to compare them to the
“ideal object”, we now discuss our results regarding the av-
erage number of significant plaintexts and the expected es-
timation error considering ciphertext-only as well as known
and chosen plaintext attacks.

5.2.1 Number of Significant Plaintexts
Fig. 3 shows the average number of significant plaintexts

MS
α=0.5 for the “ideal object” and our proposed schemes for

different domain and range sizes. We chose α = 0.5 since, in
this case, MS

α corresponds to the number of plaintexts that
an attacker has to consider for them to contain the underly-
ing plaintext of a challenge ciphertext with a probability of
at least 50%. For M = 10, according to our expectations,
we can see that in case that no additional information (e.g.,
ciphertexts or plaintext-ciphertext pairs) has been disclosed,
the random offset addition approach has the highest number
of plaintexts that have to be considered by an adversary. We
can also see that, since Moffset

α=0.5 ≈ 4.9, which roughly corre-
sponds to 50% of M , the offset addition approach provides
a nearly uniform distribution of plaintexts that have been
assigned to each ciphertext.

Note, that Moffset
α=0.5 is not exactly 5.0 since ciphertexts at

the beginning and the end of the range have a smaller num-
ber of potentially underlying plaintexts. Therefore, for these
ciphertexts, the number of significant plaintexts is smaller
as well, slightly decreasing the overall result.

The subrange selection approaches (M sr-u-samp
α=0.5 ≈ 4.7 and

M sr-ideal
α=0.5 ≈ 4.4) and the random uniform sampling schemes

(Mu-samp-rand
α=0.5 ≈ 3.5 and Mu-samp-med

α=0.5 ≈ 2.9) perform in-
creasingly worse. However, all proposed schemes clearly out-
perform the “ideal object” with M ideal

α=0.5 ≈ 1.9. For M = 20
and M = 30, we can see similar results confirming the ob-
servations for M = 10.

In case of the adversary’s knowledge of z ∈ {1, 2} addi-
tional ciphertexts, we see in Fig. 3 that, forM ∈ {10, 20, 30},
the average number of significant plaintexts reduces for all
proposed schemes, while the decrease is less considerable for
the “ideal object”. Nevertheless, even despite the reduction
ofMS

α=0.5|z·c, our schemes still improve on the“ideal object”.
Considering the disclosure of plaintext-ciphertext pairs

and the chosen plaintext scenario, Fig. 3 shows the decrease

of both MS
α=0.5|z·(p,c) and MS

α=0.5|z·p for all schemes, includ-

ing the“ideal object”. The experiment confirms the assump-
tion that the offset addition approach is unable to provide
any level of security as soon as a single plaintext-ciphertext
pair has been disclosed. While for z = 1, the proposed



Figure 2: Empirically measured frequency distributions of plaintext-ciphertext assignments (108 OPFs).

schemes still clearly outperform the “ideal object” in the
larger domains M ∈ {20, 30}, they differ only marginally for
the case z = 2. Although the uniform sampling approaches
perform slightly worse compared to the subrange selection
approaches if no information or only ciphertexts are avail-
able, they are competitively resilient when considering the
disclosure of plaintexts.

Generally, when using the uniform sampling approach, the
random splitting strategy seems preferable over selecting the
median as splitting element. Considering the studied sub-
range selection schemes, both variants yield approximately
the same number of significant plaintexts.

5.2.2 Estimation Error
Finally, we compared the proposed schemes and the“ideal

object” in terms of expected estimation error. Fig. 4 shows
the values of ES for different domain and range sizes.
Over all scenarios, using the “ideal object” leads to very

low expected estimation error results, with values between
5− 8% of the respective domain size. Similar to M ideal

α=0.5|z·c,
knowledge of additional ciphertexts does not have a notice-
able impact on Eideal

|z·c. However, the expected error de-
creases in the presence of known or chosen plaintext attacks.
The random offset addition scheme proves second-best

when only the challenge ciphertext is provided to an adver-
sary. However, it is again not able to uphold any level of dis-
closure-resilience against known plaintext-ciphertext pairs,
resulting in Eoffset

|1·(p,c) = 0 and Eoffset|1·p = 0.
The subrange selection schemes feature high expected es-

timation errors given that only the challenge ciphertext is
provided to an adversary (the column ’no disclosure’ ). How-

ever, they turn out to be comparatively sensitive to adver-
saries observing additional ciphertexts or plaintext-cipher-
text pairs. In this case, their expected estimation error
roughly drops to the same level as that of the uniform sam-
pling approaches. Considering the variant based on the
“ideal object”, the results for plaintext-ciphertext disclosure
can be explained by the linear character of its m.l.p.s inside
the subrange. As soon as two such pairs are known, it allows
to estimate the subrange limits with high accuracy.

5.2.3 Summary
Recapitulating the results, all proposed OPF construc-

tion schemes show higher disclosure-resilience (in terms of
the number of significant plaintexts and estimation error)
than the “ideal object” in cases where only the challenge ci-
phertext or a set of ciphertexts are known to the adversary.
Furthermore, the subrange selection and the random uni-
form sampling schemes also outperform the “ideal object”
when considering known or one chosen plaintext.

However, we also note that the disclosure-resilience of all
proposed schemes heavily decreases with a growing amount
of additional information available to the adversary. Espe-
cially the simulations considering known or chosen plaintext
show disclosure-resilience properties close to (or even worse
than) the “ideal object”.

Here, it is important to carefully interprete the already
achieved values with respect to the possible optima. Due
to the inherent structure of OPFs, the availability of just
a small portion of extra information to the adversary must
necessarily lead to considerable decreases of the maximum
possible values of our disclosure-resilience metrics. This is



Figure 3: Number of significant plaintexts with α = 0.5 for M ∈ {10, 20, 30} and N = M2.

Figure 4: Expected estimation error for M ∈ {10, 20, 30} and N = M2.

best visualized for the chosen plaintext scenarios. Here, the
most successful approach of an attacker was to choose z
plaintexts splitting the domain into z+1 equally sized parts.
Consequently, the possible maxima of the number of signif-
icant plaintexts and estimation errors drop to less than a
1

z+1
fraction of their original value.

However, even in this light, the results obtained for the
studied schemes are unsatisfactory. This conclusion clearly
conveys the need to further investigate OPF construction
schemes with high disclosure-resilience in the presence of
well-informed and powerful attackers.

6. CONCLUSION
With OPE allowing users of cloud applications to pro-

tect their sensitive information while still enabling service
providers to perform efficient query operations on the en-
crypted data, several approaches and security notions have
been proposed for the analysis of OPE. Since it has been
shown that providing indistinguishability either demands
for exponential (hence inefficient) range sizes or an exten-
sive weakening of the security notion, we studied how to
enhance the one-wayness properties of OPE schemes. We
argue that these notions are most important in practical
applications where encrypted data may be observed during
communication or due to database access. We proposed two
novel metrics to enable a descriptive evaluation and com-
parison of the security features of OPE schemes under these
conditions. Furthermore, building upon the knowledge of
the weaknesses of the “ideal object”, we suggested three

novel schemes for OPF construction that show improved
one-wayness and disclosure-resilience properties.

In our evaluation, we were able to show that all pro-
posed schemes outperform the “ideal object”when consider-
ing ciphertext-only attacks. Moreover, in case of known or
chosen plaintexts, while the random offset addition cannot
provide any security features anymore, the proposed random
subrange selection and random uniform sampling schemes
mostly improve on the “ideal object”.

However, the obtained results clearly suggest that further
improvement is possible in different directions.

On the one hand, the proposed approaches should be fine-
tuned. Especially, the random uniform sampling schemes
show a tendency to concentrate ciphertexts at the edges of
R. To lower the probability of the responsible unbalanced
recursions, the usage of alternative distributions to choose
splitting elements and ciphertexts should be investigated.

On the other hand, the observed sensitivity of all stud-
ied OPFs construction schemes against known and chosen
plaintext attacks, motivates the further investigation of al-
ternative schemes achieving higher disclosure-resilience un-
der such adverse conditions. Given the current results, only
applications guaranteeing an at most marginal disclosure of
plaintext information will profit from the proposed schemes.

Several further issues remain to be studied in future work.
First of all, the mathematical modeling and analysis can
be improved. Particular next steps should include a more
thorough mathematical analysis of the suggested OPF con-
struction schemes regarding the proposed and previously es-



tablished metrics. Furthermore, it would be interesting to
study extensions of the proposed disclosure-resilience met-
rics that allow to consider different plaintext distributions.
Finally, since our empirical evaluation was limited to do-
main sizes M ∈ {10, 20, 30} and N = M2, we plan to inves-
tigate the impact of increasing domain and range sizes on
the disclosure-resilience of the proposed schemes.
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