
Dominating an s-t-Cut in a Network

Ralf Rothenberger1, Sascha Grau2, and Michael Rossberg2

1 Friedrich-Schiller-Universität Jena
ralf.rothenberger@uni-jena.de
2 Technische Universität Ilmenau
first.lastname@tu-ilmenau.de

Abstract. We study an optimization problem with applications in design
and analysis of resilient communication networks: given two vertices s, t
in a graph G = (V,E), find a vertex set X ⊂ V of minimum cardinality,
such that X and its neighborhood constitute an s-t vertex separator.
Although the problem naturally combines notions of graph connectivity
and domination, its computational properties significantly differ from
these relatives.

In particular, we show that on general graphs the problem cannot be

approximated to within a factor of 2log1−δ n, with δ = 1/ log logc n and
arbitrary c < 1/2 (if P 6= NP). This inapproximability result even applies
if the subgraph induced by a solution set has the additional constraint of
being connected. Furthermore, we give a 2

√
n-approximation algorithm

and study the problem on graphs with bounded node degree. With ∆
being the maximum degree of nodes V \ {s, t}, we identify a (∆ + 1)
approximation algorithm.

Keywords: graph theory, approximation algorithms, inapproximability

Published at SOFSEM2015. The original publication is available at www.springerlink.com

(http://dx.doi.org/10.1007/978-3-662-46078-8_33).

Ralf Rothenberger was supported by the German Federal Ministry of Education and Research.

1 Introduction

In recent years, the development of secure overlay networks has strongly
advanced (e.g. [1,2,3]). As a consequence, we are approaching a situation,
where the effort an attacker needs to spend on identifying worthwile targets
may exceed the costs of mounting the actual attack. This is especially true,
since huge botnets, which are able to conduct massive denial-of-service
attacks, can be cheaply rent on the internet. In contrast, while actively
observing a network node will reliably reveal its communication partners, it
might be connected to a risk of detection, a risk of failure or a considerable
amount of resources necessary to obtain the involved nodes’ addresses.

Motivated by these facts, we study a problem that we term as Cut
Domination: given a graph G and a pair of particular nodes s and t, we

seek to select a node set X of minimum cardinality such that the nodes
in X and their neighborhood constitute an s-t-vertex-separator.

This problem is posed to an attacker possessing knowledge about
the network topology, but not about actual addresses of the participants
(needed to mount the attack). Examples for such settings are virtual private
networks with dynamic routing [1], where the data itself is encrypted and
authenticated, but denial-of-service attacks may still cause a severe thread.

A related theoretical problem was first described in [4,5], where, given
graph G and a budget x ≤ n, the number of node pairs rendered unreach-
able by removing x nodes and their respective neighborhood was to be
maximized. The derived decision problem was shown to be NP-complete,
but needs to be solved in order to build more resilient networks.

Cut Domination differs from this problem as only paths between
a specific node pair s, t are to be disrupted. One can imagine s and
t as important and well-equipped communication partners, leaving the
intermediate network nodes as easier targets for an attack. Although
the related network formation problem is easy to solve (connect s and t
by as many isolated, parallel paths as possible), the properties of Cut
Domination are interesting in their own respect and might provide insight
into the practically-motivated problem described in [4,5].

Our contributions are the following: After introducing a problem
formalization in Sec. 2, we show in Sec. 3 that generally the Cut Domi-
nation problem cannot be approximated to within a factor of 2log

1−δ n,
with δ = 1/ log logc n and arbitrary c < 1/2 (if P 6= NP). This result
also holds if the observed node set has to be connected (Connected
Cut Domination) and for the respective weighted variant (Weighted
Cut Domination). In Sec. 4 we give a 2

√
n-approximation algorithm for

Weighted Cut Domination, which can also be used to approximate
Connected Cut Domination to within a ratio of n2/3 of an optimal
solution. Finally, in Sec. 5, we show a (∆+ 1)-approximation algorithm for
Weighted Cut Domination, with ∆ denoting the maximum degree of
nodes V \ {s, t}. Since Cut Domination is a special case of Weighted
Cut Domination, all upper bound results for the weighted variant also
apply to the unweighted version.

2 Problem Definition & Notation

To formalize the studied optimization problem, we first introduce necessary
notation: For an undirected graph G = (V,E) and a node u ∈ V , let
the inclusive neighborhood of u be N+(u) = {u} ∪ {v ∈ V | {u, v} ∈ E}.

s t

(a) Smallest s-t-cut dominator (black) and
its dominated s-t-cut (grey).

s t

(b) Smallest connected s-t-cut dominator
(black) and its dominated s-t-cut (grey).

Fig. 1. Variants of cut domination.

Analogously, for a set U ⊆ V , let N+(U) =
⋃

u∈U N
+(u) be the inclusive

neighborhood of U .
Furthermore, for an undirected graph G = (V,E) and non-adjacent

nodes s, t ∈ V , an s-t-vertex-separator is a node set U ⊆ V \ {s, t} with
the property that the removal of U from G disconnects s and t. It is a
well-known result, that a minimum s-t-vertex-separator can be found in
polynomial time [6]. Sometimes, such a set is also called an s-t vertex
cut. In the same context, we define an s-t-cut dominator to be a set
U ⊆ V \ {s, t}, so that N+(U)\ {s, t} is an s-t-vertex-separator of G. In
other words, U dominates an s-t-vertex-separator.

Given a simple undirected graph G = (V,E) and two non-adjacent
nodes s, t ∈ V , the Cut Domination problem consists of finding a
minimum s-t-cut dominator. Furthermore, we define the Connected
Cut Domination problem of finding a connected s-t-cut dominator of
minimum cardinality. Examples for typical solutions are given in Fig. 1.

Both problems admit a natural generalization by adding a weight
function w : V → R+ that assigns positive weights to the nodes of
G. Trying to find a (connected) set U ⊆ V \ {s, t} of minimum weight
w(U) =

∑
v∈U w(v) dominating an s-t-separator is called Weighted

(Connected) Cut Domination.
In the rest of the paper let the problem size n = |V \{s, t}|, the number

of nodes excluding s and t.

3 Inapproximability of Cut Domination

We show an approximation-preserving polynomial-time reduction from
Red-Blue Set Cover to Cut Domination.

The Red-Blue Set Cover problem is a generalization of the Set
Cover problem, where the universe U is partitioned into two subsets,
a set R of red elements and a set B of blue elements. We are given a

collection of sets S = {S1, S2, . . . , Sn} over the universe U and have to find
a subcollection C ⊆ S containing all blue elements while also containing a
minimum number of red elements. Let R(C) =

⋃
Si∈C Si ∩R denote the

set of red elements covered by the subcollection C.
Carr et al. showed in [7] that Red-Blue Set Cover is O(2log

1−δ n)-
inapproximable with δ = 1/ log logc n for every constant c < 1/2, unless
P=NP. This result even holds for Red-Blue Set Cover with the
additional constraint that every set Si ∈ S only contains one blue and two
red elements.

Theorem 1. Cut Domination is O(2log
1−δ n)-inapproximable for every

constant c < 1/2, with δ = 1/ log logc n, if P6=NP.

Proof. We are given an instance I = (S, R,B) of Red-Blue Set Cover
with the constraint, that every set contains one blue and two red elements.
W.l.o.g. we can assume, that every red element and every blue element is
contained in at least one set S ∈ S. Furthermore, we assume an arbitrary
ordering of the sets in S. We now build an instance I ′ = (G = (V,E), s, t)
of Cut Domination with the following properties:

(1) Every feasible solution C ⊆ S for I corresponds to a feasible solution
U ⊆ V \ {s, t} of size |R(C)| for I ′.

(2) For every feasible solution U ⊆ V \ {s, t} for I ′, we can find a solution
C ⊆ S for I with |R(C)| ≤ |U |.

Starting from an empty graph, we first create nodes s and t. Then we
add a complete subgraph of ‘red’ nodes VR = {vr | r ∈ R}, each of them
corresponding to one of the red elements in R. Afterwards we construct
two s-t-pathways, so called b-connectors, for each blue element b ∈ B and
connect them to some of the ‘red’ nodes. This is done in such a way, that
all of the b-connectors have to be cut to disconnect s and t, while cutting
them can be done by selecting pairs of ‘red’ nodes whose corresponding
elements are in a set together with b. The construction of the b-connectors
will be explained in greater detail now, for an arbitrary, but fixed blue
element b ∈ B.

For every set Si ∈ S that contains b, we do the following. First, we
create a pair of nodes uil, u

i
k corresponding to the red elements rl, rk in

Si. Second, we add edges
{
uil, vl

}
and

{
uik, vk

}
. Third, we connect both

uil and uik to each node of the previously created pair for b. If there is no
previously created pair for b, we connect uil and uik to s. After examining
all sets, we connect both nodes of the lastly created pair to t. This gives
us the first b-connector. An example of such a b-connector can be seen in

Fig. 2. By repeating this procedure and creating node pairs wi
l , w

i
k instead

of uil, u
i
k, we obtain the second b-connector.

VR

v1

v2 v3

v4

s t

S1 = {b1, r1, r2}

u1
1

u1
2

S3 = {b1, r2, r3}

u3
2

u3
3

S5 = {b1, r3, r4}

u5
4

u5
3

Fig. 2. The first b1-connector.

We do this for all blue elements b ∈ B to get the graph G. The
construction can obviously be performed in polynomial time and creates
a graph G with exactly 4|S|+ |R| nodes, excluding s and t. Since every
red element appears in at least one set of S and every set contains exactly
two red elements, there can be at most 2|S| red elements. Thus, it holds
that |V (G) \ {s, t}| ≤ 6|S|.

The only thing left for us to show is, how to transform feasible solutions
of the Red-Blue Set Cover instance I to feasible solutions of the Cut
Domination instance I ′ and vice versa while containing their costs.

Given a solution C ⊆ S of I we determine the set R(C) of red elements
covered by C and take the nodes U = {vr ∈ VR | r ∈ R(C)} as an s-t-cut
dominating set in G. Note that U only consists of nodes from VR and does
not contain any node of a b-connector. By definition, it holds that |R(C)| =
|U |. Choosing at least one of the vr ∈ VR, all nodes of VR are dominated
since VR induces a complete subgraph. Therefore the only s-t paths left
may lead over the b-connectors. Consider an arbitrary blue element b ∈ B.
Since C is a solution to I it has to cover b. Consequently, there has to
be a set Si ∈ C containing b. Furthermore, both the red elements rk and
rl from Si have to be contained in R(C). This means, that vrk and vrl
are in U . According to the construction, there are node pairs uik, u

i
l and

wi
k, w

i
l in the b-connectors and edges

{
vrk , u

i
k

}
,
{
vrl , u

i
l

}
,
{
vrk , w

i
k

}
and{

vrl , w
i
l

}
. Due to the fact, that vrk and vrl are chosen, uik, u

i
l, w

i
k and wi

l

are dominated, therefore cutting both b-connectors. Since this holds for
every b ∈ B, all b-connectors are cut, thus separating s and t.

Consider now a set U ⊆ V (G) \ {s, t} that dominates an s-t-separator
of G. First, we show that we can choose a set U ′ ⊆ VR with |U ′| ≤ |U |
that also dominates an s-t-separator of G. To do so, we consider the
b-connectors. Due to the construction there are only two ways to dominate
a cut of a b-connector: either by choosing a node of the connector or by
choosing two nodes vrk , vrl ∈ VR, so that {b, rk, rl} ∈ S. In the second case,
both b-connectors are cut and we are done. Otherwise, there has to be at
least one node from U on each of the two b-connectors. Instead of taking
these two nodes, we can arbitrarily choose a set Sj ∈ S with b ∈ Sj and
take the nodes vrk , vrl ∈ VR corresponding to the red elements rk, rl ∈ Sj .
By doing so we still cut both b-connectors and additionally dominate all
nodes from VR, if they were not already. We can do this for all b ∈ B while
still containing the size of the solution. This first step ensures that all
b-connectors are cut by nodes in VR. Afterwards, we eliminate all nodes
from V \ VR from the solution to obtain U ′.

We now define R(U ′) to be the set of all red elements whose corre-
sponding nodes are in U ′. We can choose C as the collection of all sets
S ∈ S that contain only red elements from R(U ′). Since U ′ ⊆ VR and
R(C) ⊆ R(U ′) it now holds that |R(C)| ≤ |R(U ′)| = |U ′|. Our transforma-
tion ensures that for every blue element b ∈ B there are nodes vrk , vrl ∈ U ′
with {b, rk, rl} ∈ S. Especially rk, rl ∈ R(U ′) and therefore {b, rk, rl} ∈ C.
Since this holds for every b ∈ B, C has to cover all blue elements.

Weighted Cut Domination has to be at least as difficult to ap-
proximate as the unweighted case. Hence, the inapproximability result
also holds for the weighted variant of the problem. The s-t-cut dominat-
ing set that can be constructed from a Red-Blue Set-Cover solution
consists only of nodes from VR, therefore it is connected. Furthermore,
we transform a feasible solution of the constructed graph G to a solution
of the same size that consists only of nodes from VR. This is possible
for every s-t-cut dominating set of G. Especially, it is possible for every
connected s-t-cut dominating set of G. Consequently, Theorem 1 also holds
for Connected Cut Domination.

4 A 2
√
n-Approximation in General Graphs

We give a 2
√
n-approximation algorithm for Weighted Cut Domina-

tion. Since the unweighted problem is a special case of the weighted
variant, the approximability result holds for both.
Algorithm 1 proceeds as follows: the weights appearing in the graph are,
one by one, considered as maximum weight of a vertex from an optimal

Algorithm 1: Weighted Cut Domination Approximation (G, s, t, w)

1 foreach wi ∈ {w(v) | v ∈ V \ {s, t}} do
2 U1 ← ∅;
3 while ∃ v ∈ V \ (U1 ∪ {s, t}) : |N

+(v)\({s,t}∪N+(U1))|
w(v)

≥
√
n

wi
do

4 choose such a node v arbitrarily;
5 U1 ← U1 ∪ {v};
6 G′ ← G \ (N+(U1) \ {s, t});
7 if s and t are in the same connected component H of G′ then
8 foreach v ∈ V \ {s, t} do
9 w′(v)← min

{
w(u) | u ∈ N+(v) \ {s, t}

}
;

10 C ← min-vertex-cut(H, s, t, w′);
11 Ci ← ∅;
12 foreach v ∈ C do
13 v′ ← argmin

{
w(u) | u ∈ N+(v) \ {s, t}

}
;

14 Ci ← Ci ∪ {v′};
15 Ci ← Ci ∪ U1;

16 else
17 Ci ← U1;

18 return argminX∈{Ci|1≤i≤n}{w(X)};

solution. For every weight wi, we compute a candidate solution Ci as
follows.

First, we greedily choose nodes v, which dominate at least w(v)
√
n/wi

currently undominated nodes, including themselves, and consider their
inclusive neighborhoods as dominated. This is repeated until either an
s-t-cut is dominated or no appropriate node is left. The result of this
greedy selection is a set U1. Second, we consider the induced subgraph G′

of currently undominated nodes. If s and t are not connected in G′, the
candidate solution for wi is the set Ci = U1 and the algorithm continues
with wi+1. Otherwise we consider the connected component H of G′ which
contains s and t. The nodes of V \ {s, t} are then assigned new weights
w′, so that w′(v) := min {w(u) | u ∈ N+(v) \ {s, t}}. The new weights
represent the cost to dominate these nodes. Now we compute a minimum
s-t-cut C in (H,w′). Third, we choose a minimum-weight neighbor in G
for each node v ∈ C arbitrarily. This gives us a set Ci of weight at most
w′(C). The candidate solution for wi is the set Ci = U1 ∪ Ci.

After calculating the sets Ci for 1 ≤ i ≤ n, the set with minimum
weight w(Ci) is returned.

Theorem 2. Algorithm 1 is a
√
n · (1 + wmax/OPT) approximation algo-

rithm, where OPT denotes the weight of an optimal solution and wmax

denotes the maximum weight of a node from this optimal solution. Espe-
cially, this is at most 2

√
n.

Proof. Consider an optimal solution Vopt ⊆ V \ {s, t}. Now let

wmax = max {w(v) | v ∈ Vopt}.

It follows that: (i) w(v) ≤ wmax for all v ∈ Vopt and
(ii) wmax ≤ w(Vopt).

Since Algorithm 1 does one round for each node’s weight, there must be
a round 1 ≤ j ≤ n with wj = wmax. Consider the respective run of the
algorithm’s main loop.
To bound the weight of U1, we take a look at the nodes v1, v2, . . . v|U1| of
U1 in the order in which they are included in U1 by the algorithm. Let
the set Uk

1 =
{
v1, . . . , vk

}
be the set U1 after the k-th round of the greedy

selection and U0
1 = ∅. Let the set of newly dominated nodes for vk be

Nk := N+(vk) \ ({s, t} ∪N+(Uk−1
1)). These sets are pairwise disjoint.

Since every node vk ∈ U1 dominated at least |Nk| ≥ w(vk)
√
n/wmax new

nodes, it holds that

w(U1) =

|U1|∑
k=1

w(vk) ≤
|U1|∑
k=1

|Nk| wmax/
√
n

≤ wmax√
n
n =
√
n wmax.

After the greedy selection all v ∈ V \ (U1 ∪ {s, t}) fulfill

|N+(v) \ ({s, t} ∪N+(U1))| < w(v)
√
n/wmax. (1)

Now take a closer look at G′ = G\(N+(U1) \ {s, t}), the induced subgraph
of currently undominated nodes. If s and t are cut in G′, U1 is an s-t-cut
dominating set of weight at most

√
n w(Vopt) as desired. Let us now

assume that this is not the case, i.e. there is a connected component
H of G′ which contains both s and t. We know that Vopt dominates an
s-t-cut in G. Therefore, Vopt \ U1 has to dominate an s-t-cut in H. It now
holds that (N+(Vopt \ U1) \ (N+(U1) ∪ {s, t})) ∩ V (H) is an s-t-cut in H.
Therefore, the weight w′(C) of the minimum w′-weight s-t-cut in H is at
most w′((N+(Vopt \ U1) \ (N+(U1) ∪ {s, t})) ∩ V (H)). Furthermore, since
for every node v ∈ C there is a node u ∈ N+(v) \ {s, t} with w(u) = w′(v),
it holds that

w(Cj) ≤ w′(C). (2)

This leads to

w(Cj) ≤ w′(C)

≤ w′((N+(Vopt \ U1) \ (N+(U1) ∪ {s, t})) ∩ V (H))

≤
∑

v∈Vopt\U1

∑
u∈N+(v)\(N+(U1)∪{s,t})

w′(u)

≤
∑

v∈Vopt\U1

|N+(v) \ (N+(U1) ∪ {s, t})|w(v)

(1)
<

∑
v∈Vopt\U1

√
n w(v)

w(v)

wmax

(i)

≤
∑

v∈Vopt\U1

√
n w(v) ≤

√
n w(Vopt).

Hence, by uniting Cj and U1, we obtain a set of nodes with weight at
most

√
n w(Vopt) +

√
n wmax in run j of the algorithm. Consequently, the

algorithm returns a set of weight at most
√
n(1+wmax/w(Vopt)) w(Vopt).

In the unweighted version all weights are 1. Therefore, the following
simplifications of the algorithm can be applied. First, one run of the
algorithm’s main loop will be sufficient, since we know wmax = 1. Second,
the greedy procedure only chooses nodes dominating at least

√
n new

nodes. Third, the minimum-weight-function is not necessary. It suffices to
calculate a minimum cardinality s-t-vertex-cut of G′.
So, the algorithm will degenerate to greedily choosing nodes which dom-
inate at least

√
n new nodes and computing a minimum s-t-vertex-cut

in the resulting graph of undominated nodes. The approximation ratio
of this algorithm is

√
n (1 + 1

OPT), where OPT denotes the size of the
optimal solution. Since OPT is at least one the simplified algorithm would
give a 2

√
n-approximation in the worst case. We can improve this ratio by

adding a preprocessing step that enumerates all subsets U ⊆ V up to a
constant size k ∈ N and checks whether they dominate an s-t-cut. The first
subset to do is an optimal solution. If none of the subsets dominates an
s-t-cut, the optimal solution has to be of size at least k+ 1. Therefore, the
approximation ratio of the simplified algorithm with such a preprocessing
step is at most

√
n(1 + 1

k+1). The preprocessing needs O(knk(|V |+ |E|))
time, since for all

∑k
i=1

(
n
i

)
subsets it has to construct the graph G′ of

undominated nodes and test whether s and t are connected in G′. We
state this observation in the following corollary.

Algorithm 2: Connected Cut Domination Approximation (G, s, t)

1 foreach c ∈ V \ {s, t} do
2 foreach v ∈ V \ {s, t} do
3 w(v)← distG\{s,t}(c, v)

4 foreach wi ∈ {w(v) | v ∈ V \ {s, t}} do
5 U1 ← ∅;
6 while ∃ v ∈ V \ (U1 ∪ {s, t}) : |N

+(v)\({s,t}∪N+(U1))|
w(v)

≥
√
n

wi
√
2wi

do

7 choose such a node v arbitrarily;
8 U1 ← U1 ∪ {v};
9 G′ ← G \ (N+(U1) \ {s, t});

10 if s and t are in the same connected component H of G′ then
11 foreach v ∈ V \ {s, t} do
12 w′(v)← min

{
w(u) | u ∈ N+(v) \ {s, t}

}
;

13 C ← min-vertex-cut(H, s, t, w′);
14 Ci ← ∅;
15 foreach v ∈ C do
16 v′ ← argmin

{
w(u) | u ∈ N+(v) \ {s, t}

}
;

17 Ci ← Ci ∪ {v′};
18 Ci ← Ci ∪ U1;

19 else
20 Ci ← U1;

21 Cc,i ← ∅;
22 foreach v ∈ Ci do
23 P (v, c)← shortest v-c-path in G \ {s, t};
24 Cc,i ← Cc,i ∪ V (P (v, c));

25 return argminX∈{Cc,i|c∈V \{s,t}, 1≤i≤n}{|X|};

Corollary 1. Cut Domination can be approximated with ratio√
n · (1 + 1

k+1) for every constant k ∈ N.

Algorithm 2 is variation of Algorithm 1 and approximates Connected
Cut Domination. Now let distG\{s,t}(v, u) denote the minimum hop
distance between nodes u and v in G \ {s, t}.

Theorem 3. Algorithm 2 is a
√
n
√
OPT approximation algorithm for

Connected Cut Domination, where OPT denotes the size of an optimal
solution. Especially, this is at most n2/3.

Proof. Now consider an optimal solution Vopt ⊆ V \ {s, t} and let

d(v) = max
u∈Vopt

{
distG\{s,t}(v, u)

}

be the maximum distance of any node from Vopt to v. At some time the
algorithm is bound to choose a center node v0 ∈ Vopt with the property
that d(v0) ≤ |Vopt|/2. Then, weight w(v) represents the number of nodes
we have to add in the worst case to connect v to v0. Considering run j
with wj = wmax = d(v0), it holds that

(i) wv ≤ wmax for all v ∈ Vopt and (ii) wmax ≤ |Vopt|/2.

The greedy phase now starts with U1 = {v0} and chooses nodes v which
dominate at least w(v)

√
n/wmax

√
2wmax undominated nodes. Consequently,

we obtain a set U1 of weight at most

w(U1) ≤
|U1|∑
k=1

|Nk| wmax

√
2wmax/

√
n

≤ wmax
√

2wmax√
n

n

(ii)

≤
√
n
√
|Vopt| |Vopt|

2
.

For the set Cj , it holds that

w(Cj) ≤ w′(N+(Vopt \ U1) \ (N+(U1) ∪ {s, t}))
≤

∑
v∈Vopt\U1

∑
u∈N+(v)\(N+(U1)∪{s,t})

w′(u)

≤
∑

v∈Vopt\U1

w(v)
w(v)

√
n

wmax
√

2wmax

(i)

≤
√
n
√
wmax√
2

(|Vopt| − 1)

(ii)

≤
√
n
√
|Vopt|

2
|Vopt| − 1.

To connect U1 \ {v0} and Cj to v0, we need at most w(U1) +w(Cj) nodes,
including U1 \ {v0} and Cj . Thus, it holds that

|X| ≤ |Cv0,j | ≤ 1 + w(U1) + w(Cj) ≤
√
n
√
|Vopt||Vopt|.

5 The Case of Bounded Vertex Degrees

We show that Weighted Cut Domination is (∆+ 1)-approximable, if
all but at most a logarithmic number of nodes are of degree ∆ or less.

Theorem 4. Let W ⊆ V \{s, t} with |W | = O(log n). Then Weighted
Cut Domination is (∆W + 1)-approximable where ∆W is the maximum
degree of nodes from V \ ({s, t} ∪W) in G \ {s, t}.

Proof. Consider an algorithm that iterates all 2|W | subsets U ⊆W . For
each U ⊆W the algorithm proceeds like one round of Algorithm 1, but
with U taking the place of U1, and calculates a candidate solution CU . It
then outputs the candidate solution of minimum weight.

Now we need to show, that this algorithm outputs a (∆W + 1)-
approximate solution. Let Vopt be a minimum weight s-t-cut dominating
set of G. Furthermore, let Wopt = Vopt ∩W . Since Wopt ⊆W , there is a
round where U = Wopt. We know that every node from Vopt \Wopt is from
V \ ({s, t} ∪W) and therefore has a maximum degree of ∆W in G \ {s, t}.
It follows, that for every node v ∈ Vopt \Wopt∑

u∈N+(v)\{s,t}

w′(u) ≤ (∆W + 1)w(v). (3)

Let us now consider the induced subgraph GWopt of nodes which are not
dominated by Wopt. We know that Vopt dominates an s-t-vertex-cut of G.
Therefore, Vopt \Wopt has to dominate an s-t-vertex-cut of GWopt . It now
holds, that N+(Vopt \Wopt) \ (N+(Wopt) ∪ {s, t}) is an s-t-cut of GWopt .
Since C is a minimum s-t-cut of GWopt according to w′, it is also true that

w′(C) ≤ w′(N+(Vopt \Wopt) \ (N+(Wopt) ∪ {s, t})). (4)

Therefore, for the s-t-cut dominating set CWopt constructed from C, it
holds that

w(CWopt)
(2)

≤ w′(C)

(4)

≤ w′(N+(Vopt \Wopt) \ (N+(Wopt) ∪ {s, t}))
≤

∑
v∈Vopt\Wopt

∑
u∈N+(v)\{s,t}

w′(u)

(3)

≤ (∆W + 1)w(Vopt \Wopt).

Hence, it holds that w(Wopt∪CWopt) ≤ w(Wopt)+(∆W +1)w(Vopt\Wopt) =
(∆W + 1)w(Vopt)−∆Ww(Wopt). We obtain a (∆W + 1)-approximation in
the worst case and an upper bound for the size of the algorithm’s solution.
Since the algorithm computes 2|W | induced subgraphs and minimum weight
s-t-vertex-cuts, its running time is O(2|W |(|V |+ |E|+

√
|V ||E|)), which

is polynomial in n if and only if |W | = O(log n).

Theorem 4 is especially relevant in practical applications, since com-
munication overlay networks usually are of constant or logarithmic degree
for scalability reasons.

As the minimum s-t-vertex-cut provides an upper bound for the mini-
mum s-t-cut-dominating set, Cut Domination can be solved in polyno-
mial time for all graphs with a minimum s-t-vertex-cut of constant size. In
particular, this includes all graphs, where s and t have degrees bounded
by a constant.

6 Conclusion

Although a minimum s-t-vertex-separator can be found in polynomial
time, we showed that it is much more complex to efficiently dominate
any s-t-vertex separator. In particular, we proved that the Cut Domi-
nation problem is not approximable to within a factor of 2log

1−δ n, with
δ = 1/ log logc n and arbitrary c < 1/2 (if P 6= NP) by reducing from
Red-Blue Set Cover. Thus, its inapproximability is higher than that
of Dominating Set, the problem of finding a smallest set of nodes
dominating all nodes of a graph [8] (again, if P 6= NP).

On the positive side, we were able to show that Weighted Cut Dom-
ination is 2

√
n-approximable in general graphs and (∆+1)-approximable

in graphs with maximum degree ∆. In practice, the case of bounded node
degrees is of special interest, since common overlay networks feature at
most logarithmic degrees. The obtained (in-)approximability results are
similar to the best known results for Red-Blue Set Cover [7,9], which
is believed to be a canonical representative from the class of optimization
problems with superpolylogarithmic but potentially subpolynomial approx-
imability. Closing the gap between approximability and inapproximability
of Weighted Cut Domination by showing stronger inapproximability
or approximability results, as well as investigating inapproximability for
graphs of bounded node degree, remains for future research.

Connected Cut Domination is also of special interest, as in com-
puter networks attacks sometimes spread from one node to another. We

showed that the inapproximability result carries on to Connected Cut
Domination. An approximation algorithm similar to Algorithm 1 achieves
an approximation ratio of

√
n
√
OPT . It remains open, whether the approx-

imation ratio can be lowered to the same ratio as for Cut Domination or
which ratio is achievable for Weighted Connected Cut Domination.

Another matter of interest is the relation of Cut Domination to the
original problem described in [4,5]. It is a goal for future work to show
similar approximability bounds for that problem.

References

1. Bollapragada, V., Khalid, M., Wainner, S.: IPSec VPN Design. Cisco Press (2005)
2. Vasserman, E., Jansen, R., Tyra, J., Hopper, N., Kim, Y.: Membership-concealing

overlay networks. In: 16th ACM CCS, ACM (2009) 390–399
3. Clarke, I., Sandberg, O., Toseland, M., Verendel, V.: Private communication through

a network of trusted connections: The dark freenet. Network (2010)
4. Rossberg, M., Girlich, F., Schaefer, G.: Analyzing and Improving the Resistance of

Overlays against Bandwidth Exhaustion Attacks. In: International Workshop on
Reliable Networks Design and Modeling (RNDM). (2012)

5. Girlich, F., Rossberg, M., Schaefer, G.: On the Resistance of Overlay Networks
against Bandwidth Exhaustion Attacks. Accepted for Telecommunication Systems
Journal (Special Issue) (2014)

6. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1993)

7. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover problem.
In: ACM-SIAM Symposium on Discrete Algorithms. (2000) 345–353

8. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions.
ACM Trans. Algorithms 2(2) (April 2006) 153–177

9. Peleg, D.: Approximation algorithms for the label-covermax and red-blue set cover
problems. Journal of Discrete Algorithms 5(1) (2007) 55 – 64

	Dominating an s-t-Cut in a Network

