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Abstract

In the recent years, live streaming of multimedia content has developed into a major
application on the Internet. Following a peer-to-peer approach, it can be realized
despite a limited availability of computing and bandwidth resources at the data source.
For this, the source and the receivers (called peers) cooperate to distribute the data to
all participants.

Such peer-to-peer live streaming systems support the freedom of information. Fur-
thermore, they provide a powerful and cost-efficient alternative to the traditional
distribution channels of live media content.

However, the stability of peer-to-peer live streaming systems is constantly challenged.
Especially, the unreliability and vulnerability of their participants allows for failures
and attacks suddenly disabling certain sets of peers. The consequences of such events
on a streaming system are largely determined by its distribution topology. The latter
reflects the pattern of communication between the system’s participants.

In this thesis, we analyze a broad range of optimization problems occuring when
modeling different notions of stability of such distribution topologies. Besides obtaining
insights that are directly applicable in the design of stable peer-to-peer live streaming
systems, we also identify connections with very different areas of mathematics.

When measuring damage dealt to a streaming system, we account for system-wide
packet loss as well as the decrease in streaming quality perceived by individual peers.
We discuss notions of stability against both attacks and failures. However, we set a
special focus on attack-stability. Here, we follow two different approaches.

At first, we investigate the computational complexity and approximability of the
problem of finding resource-efficient attacks creating a given amount of damage. This
allows to point out computational limitations for an attacker’s planning abilities.
Additionally, it demonstrates the influence of the chosen stream encoding and important
topology properties on the hardness of such attack problems.

Then, we turn to study topology formation problems. Here, a set of topology
parameters is given and the task consists in finding an eligible distribution topology. In
particular, this topology has to minimize the maximum damage achievable by attacks
with arbitrary attack parameters.

We identify necessary and sufficient conditions on attack-stable distribution topologies.
Thereby, we give mathematically sound guidelines for the topology management of
peer-to-peer live streaming systems. We find large classes of efficiently-constructable
topologies minimizing the system-wide packet loss under attacks. Additionally, we
show that determining this feature for arbitrary topologies is coNP-complete.

Considering topologies minimizing the maximum number of peers for which an attack
leads to a heavy decrease in perceived streaming quality, the requirements change.
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Here, we show that the corresponding topology formation problem is closely related to
long-standing open problems of Design and Coding Theory.

Finally, we study the formation problem for topologies that are stable against
uncoordinated failures. We develop a probabilistic failure model and study topologies
minimizing the expected system-wide packet loss. We identify necessary and sufficient
conditions, and show that the existence of such topologies depends on the bandwidth
available to the source and the peers. In the case of their existence, we prove that it is
NP-complete to find failure-stable topologies.

The identified conditions on stable distribution topologies give possible optimization
goals for the topology management of peer-to-peer live streaming systems. The
demonstrated limitations, both for attackers and the efficient construction of certain
classes of stable topologies, can support the evaluation of trade-offs between threat and
costs of safeguarding. Consequently, they help in choosing appropriate stability goals
that match a streaming system’s intended use.
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Zusammenfassung

Die Verteilung live gesendeter Multimedia-Inhalte über das Internet hat in den letz-
ten Jahren zunehmend an Bedeutung gewonnen. Wird sie mittels eines Peer-to-
Peer-Ansatzes realisiert, sind an der Quelle des Datenstroms keine umfangreichen
Berechnungs- und Bandbreitenresourcen notwendig. Stattdessen kooperieren die Quelle
und die Empfänger (Peers genannt), um die Daten an alle Teilnehmer zu verteilen.

Derartige Peer-to-Peer Live-Streaming-Systeme bieten neue Möglichkeiten zur Sich-
erstellung der Informationsfreiheit. Außerdem stellen sie eine leistungsfähige und
kostengünstige Alternative zu traditionellen Verteilungswegen für Medieninhalte dar.

Peer-to-Peer Live-Streaming-Systeme sind jedoch ständigen Störungen ausgesetzt.
Insbesondere können unzuverlässige und leicht angreifbare Teilnehmer Ausfälle und
Angriffe ermöglichen, welche überraschend bestimmte Teilmengen von Peers aus dem
System entfernen. Die Folgen solcher Vorfälle werden großteils von der verwendeten
Verteilungstopologie bestimmt. Diese bildet die Kommunikationsverbindungen zwischen
den Teilnehmern des Streaming-Systems ab.

In dieser Arbeit analysieren wir eine breite Palette von Optimierungsproblemen welche
bei der Betrachtung verschiedener Stabilitätsbegriffe für solche Verteilungstopologien
auftreten. Hierdurch gelangen wir zu zahlreichen Erkenntnissen die direkt in das
Design stabiler Peer-to-Peer Live-Streaming-Systeme einfließen können. Zusätzlich
identifizieren wir Verbindungen zu sehr verschiedenen Gebieten der Mathematik.

Bei der Messung des an einem Streaming System auftretenden Schadens berücksichti-
gen wir sowohl systemweite Paketverluste als auch das Absinken der von einzelnen
Teilnehmern wahrgenommenen Stream-Qualität. Wir untersuchen Stabilitätsbegriffe
im Falle von Angriffen und bei Auftreten von Ausfällen. Einen besonderen Schwerpunkt
setzen wir jedoch auf die Stabilität gegen Angriffe. Hierbei werden wir zwei verschiedene
Ansätze verfolgen.

Zunächst untersuchen wir die Berechnungskomplexität und Approximierbarkeit des
Problems einen resourcen-effizienten Angriff zu finden, welcher einen vorgegebenen
Schadenswert erreicht. Ein solcher Ansatz erlaubt es grundsätzliche Beschränkungen
in den Planungsmöglichkeiten von Angreifern zu identifizieren. Zusätzlich können wir
zeigen, wie die gewählte Datenstromkodierung und wichtige Topologieparameter die
Schwierigkeit solcher Angriffsprobleme beeinflussen.

Anschließend studieren wir Topologieformationsprobleme. Dabei sind bestimmte
Topologieparameter vorgegeben und es muss eine passende Verteilungstopologie ge-
funden werden. Ziel ist es Topologien zu erzeugen, welche den durch Angriffe mit
beliebigen Parametern erzeugbaren maximalen Schaden minimieren.

Wir identifizieren notwendige und hinreichende Eigenschaften solcher angriffsstabilen
Verteilungstopologien. Hierdurch lassen sich mathematisch fundierte Zielstellungen
für das Topologie-Management von Peer-to-Peer Live-Streaming-Systemen geben. Wir
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zeigen zwei große Klassen effizient konstruierbarer Verteilungstopologien, welche den
maximal möglichen, durch Angriffe verursachten Paketverlust minimieren. Zusätzlich
beweisen wir, dass die Bestimmung dieser Eigenschaft für beliebige Topologien coNP-
vollständig ist. Soll die maximale Anzahl von Peers minimiert werden, bei denen ein
Angriff zu stark verminderter Stream-Qualität führt, ändern sich die Anforderungen
an Verteilungstopologien. Wir zeigen, dass das korrespondierende Topologieforma-
tionsproblem eng mit offenen Problemen aus Design- und Kodierungstheorie verwandt
ist.

Zusätzlich befassen wir uns mit dem Formationsproblem für Verteilungstopologien
die stabil in Bezug auf unkoordiniert auftretende Ausfälle sind. Hier entwickeln wir ein
probabilistisches Ausfallmodell und setzen das Ziel den erwarteten Paketverlust zu mini-
mieren. Wir identifizieren notwendige und hinreichende Bedingungen an entsprechende
Verteilungstopologien und zeigen dass ihre Existenz von der Bandbreite abhängt, welche
der Stromquelle und den Peers zur Verfügung steht. Existieren ausfallstabile Topologien,
so beweisen wir die NP-Vollständigkeit des entsprechenden Topologieformationsprob-
lems.

Die in dieser Arbeit identifizierten Bedingungen an stabile Verteilungstopologien
geben mögliche Zielstellungen für das Topologie-Management von Peer-to-Peer Live-
Streaming-Systemen vor. Die gezeigten Beschränkungen für Angreifer und effiziente
Topologiekonstruktion ermöglichen es Bedrohungen und Absicherungsaufwand abzu-
wiegen. Sie helfen somit für den jeweiligen Anwendungsfall geeignete Stabilitätsziele
auszuwählen.
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1. Introduction

1.1. Motivation and Goals

A peer-to-peer-based approach to distribute live multimedia data over the Internet
offers a scalable, cost-efficient, and powerful alternative to classical systems of media
distribution. It was adopted by [CRSZ02, CDK+03, MR07, BSS09] and many more.
Instead of relying only on pairwise communication between a central source and each
client, such systems exploit the resources of their participants (named peers), which
actively take part in the distribution process. Consequently, peer-to-peer systems
promise to supply the multimedia content to a number of participants that would
otherwise far exceed the bandwidth resources of the source.

However, this incorporation of peers into the distribution process also introduces
new threats on its dependability. In particular, peers are usually unreliable, possess
few resources, and are easy to attack. The evolving problems are further intensified by
the strict timing requirements caused by the demand on live multimedia data to be
available virtually without delay.

By making it possible to reach large audiences despite employing minor resources,
peer-to-peer live streaming systems can both support the freedom of information and
drive business critical applications. Hence, it is of great importance to ensure lower
bounds on the stability of these systems. Here, the vague term stability is interpreted
as a measure for the ability to withstand different types of destructive events.

In the study of peer-to-peer live streaming systems, the most prominent of such
events is a failure, i.e., the unexpected and uncoordinated leaving of a set of peers. It
is considered in virtually every stability evaluation of newly introduced peer-to-peer
streaming systems and is especially studied in [TJ07, VS10, DF10, LCC+11].

In addition to failures, it is also necessary to account for systematic and deliberate
denial-of-service attacks. These maximize damage by removing a carefully chosen set
of peers from the system. Their study is especially important, since considerations of
attack-stability have as yet played rather a minor role in the design of peer-to-peer
live streaming systems. In particular, publications in this area mostly concentrate on
very specific attacks initiated by participating peers, e.g., [WXZJ06, DFK06, DHRS07,
GCM11].

A factor that directly influences both failure- and attack-stability of a peer-to-
peer streaming system is its distribution topology. This graph structure models the
distribution process of the stream’s packets between the source and the peers. Despite
the fact that the stability of peer-to-peer streaming systems is an active field of research,
the analytical study of the influence of a system’s distribution topology on its stability
is yet often neglected. In particular, if the distribution topology is actually considered,
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1. Introduction

authors rely on rules of thumb as building ‘short’ and ‘diverse’ trees (e.g., [PWC03]).
In this thesis, we will perform an in-depth study of the interactions between the

distribution topology of a peer-to-peer live streaming system and its stability properties.
In doing this, we will concentrate on push-based peer-to-peer live streaming systems.
They offer the short delivery times and low overhead in the packet distribution process
that are necessary for the distribution of live multimedia content. Furthermore, these
systems can actively control their distribution topology and hence optimize it for
various stability goals.

Having a special focus on attack-stability, but also considering failure-stability, we
will analytically study the optimization problems posed when aiming to form stable
distribution topologies or when trying to find resource-efficient attacks on peer-to-peer
streaming systems. In the process, we will identify necessary and sufficient conditions
on distribution topologies to achieve the aspired stability goals, point out interesting
connections with Graph, Design, and Coding Theory, as well as study the computational
complexity of the occuring problems.

1.2. Contributions of this Thesis

The contributions of this thesis can be classified into the following areas:

• We adopt the graph model of [BSS09] for multitree distribution topologies in
push-based peer-to-peer live streaming systems. Building on it, we introduce
three increasingly complex measures of damage created by attacks on distribution
topologies. The LiSS-damage measure counts the system-wide number of dis-
turbed source-to-peer paths. It gives a global notion of damage to the streaming
service. In contrast, the LoSS-damage measure quantifies the number of nodes
receiving less than a given fraction of the stream packets. It is especially relevant
in situations where Multiple Description Coding is applied to the stream. Finally,
the FEC-LoSS-damage measure evaluates the number of nodes that are not able
to reconstruct the stream data although the stream is encoded using a Forward
Error Correction code.

Based on these measures, we define corresponding optimization problems that
aim at creating a desired amount of damage while using a minimum number
of removed peers. We identify computational limits of practical attackers by
analyzing the complexity and approximability of these problems. In particular, we
show that if P 6= NP, a polynomial-time attacker may have to attack a number
of nodes exceeding the possible minimum by a factor growing with the number
of distribution trees in the topology. The identified factors and the availability
of corresponding planning algorithms depend on the regarded damage function.
These results demonstrate the influence of system parameters like tree number
and chosen stream encoding on the hardness of planning optimal attacks on
peer-to-peer live streaming systems.

• We study distribution topologies that, for every number x of their n peers,
minimize the maximum LiSS-damage created by attacks removing exactly x
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1.2. Contributions of this Thesis

peers. These topologies are called optimally LiSS-stable.

In particular, we first review the results of [BSS09], giving a characterization of
optimally LiSS-stable topologies and a first set of efficiently-identifiable topologies
meeting this characterization.

Then, we determine necessary conditions on optimally LiSS-stable topologies
and use them to define a small set of rules that describe a much larger and less
restrictive set of such stable topologies.

One of these rules imposes the requirement that the supply relationships between
the direct neighbors of the source themselves correspond to an optimally LiSS-
stable topology. Due to this reason, we specifically investigate these so-called
head topologies. For this, we state a graph-based version of the characterization of
optimally LiSS-stable topologies and again identify (polynomial-time checkable)
necessary and sufficient conditions on these topologies.

Finally, we present a result of [Bri08], showing that, although it is possible to
efficiently form optimally LiSS-stable topologies with given parameters, it is
coNP-complete to decide whether a given topology is indeed optimally LiSS-
stable. Consequently, if P 6= NP, we cannot hope to identify arbitrary optimally
LiSS-stable topologies in polynomial time.

• We study distribution topologies that, for every number x of their n peers,
minimize the maximum LoSS-damage created by attacks removing exactly x
peers. These topologies are called optimally LoSS-stable.

Again, we find necessary conditions on such topologies and identify a dominating
part in the studied damage function. We treat this part as a damage measure
of its own: the forward-damage. Then, we focus on the study of topologies
minimizing forward-damage.

We show that there is a matrix representation of successor relationships in these
topologies that characterizes their stability. In particular, we find out that such
matrices must be Orthogonal Arrays or specific Packing Arrays. Furthermore,
there are close connections to Maximum Distance Separable codes. Finally, we
show that if it is possible to identify an efficient general constructing mechanism
for the studied topologies, this would solve a number of long-standing research
problems in Design and Coding Theory.

• We study distribution topologies minimizing the expected number of lost source-
to-peer paths when a set of failing peers is chosen uniformly at random. These
topologies are called random-failure-stable. We find sufficient conditions for these
topologies and demonstrate that, depending on the bandwidth available to the
source and the peers, there are situations in which no random-failure-stable
topology exists, albeit it is generally possible to form distribution topologies.
Furthermore, we show that, if they exist, it is an NP-complete problem to find
random-failure-stable multitree distribution topologies.
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Figure 1.1.: Possible paths through the sections of this document.

1.3. Structure of this Thesis

This document is structured into 7 chapters. Depending on the topical interests and
prior knowledge of the reader, it is possible to skip certain topics without impeding the
understanding of others. To ease such approaches, Figure 1.1 depicts possible paths
through this document and visualizes dependencies between the sections.

Chapter 2 is following this Introduction. It gives a brief background on the technical
details of peer-to-peer live streaming systems (Section 2.1), introduces basic building
blocks of our mathematical model (Section 2.2), and discusses possible notions of the
term stability (Section 2.3).

Then, Chapter 3 illustrates our notion of attacks on peer-to-peer live streaming
systems and introduces the damage functions used to quantify the consequences of such
attacks (Section 3.1). This is the fundament for the Chapters 4 and 5, which are also
concerned with topics of attack-stability. In the second part of Chapter 3 (beginning
with Section 3.2), we study the computational complexity and approximability of
problems posed to well-informed but resource-limited attackers on peer-to-peer live
streaming systems.

The following Chapters 4, 5, and 6 each focus on finding distribution topologies
optimizing a specific stability aspect.

In particular, Chapter 4 covers the optimally LiSS-stable topologies. Its topics
include a review of their characterization (Section 4.1), the identification of rules
defining a new, large subclass of these topologies for which membership can be checked
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1.3. Structure of this Thesis

in polynomial-time (Section 4.2), a special examination of the important subclass of
optimally LiSS-stable head topologies (Section 4.3), the question of the computational
complexity of identifying optimally LiSS-stable topologies (Section 4.4), and a brief
sketch of heuristics to establish such topologies by way of a distributed topology
management (Section 4.5).

Chapter 5 is concerned with optimally LoSS-stable topologies. After identifying basic
properties of such topologies (Section 5.1), we show that the optimized damage function
is dominated by a specific part which we call forward-damage (Section 5.2). The rest
of the chapter then focusses on distribution topologies minimizing this forward-damage
(Section 5.3).

Chapter 6 studies random-failure-stable distribution topologies. The corresponding
extension of our basic model is introduced (Section 6.1) and sufficient conditions
for random-failure-stable topologies are identified for single- and multitree topologies
(Sections 6.2 and 6.3). Finally, we investigate the computational complexity of finding
of random-failure-stable distribution topologies (Section 6.4).

The results and open questions of these topology-centered chapters are summarized
in the Sections 4.6, 5.4, and 6.5, respectively.

Chapter 7 concludes this thesis. Section 7.1 gives an overview of the studied problems
and obtained results. Finally, Section 7.2 lists open problems and sketches possible
future directions of research.
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2. Background & Fundamentals

This Chapter introduces the fundamental concepts studied in this thesis.
In particular, Section 2.1 reviews the technical background of peer-to-peer live

streaming systems. Thereby, it sketches their importance and motivates the models
and problems defined in the subsequent chapters. Section 2.2 establishes our basic
model of peer-to-peer streaming distribution topologies. It fixes notations, provides
means to describe topologies, and gives a categorization into certain topology classes.
Finally, Section 2.3 specifies our general approach to cope with the ambiguity of the
term stability in the context of peer-to-peer live streaming systems.

2.1. Peer-to-Peer Live Streaming Systems

This section introduces the basic ideas of peer-to-peer live streaming systems.
Subsection 2.1.1 describes their purpose and motivation. Furthermore, the most

basic building blocks of such a system are presented. The following Subsection 2.1.2
reviews possible encodings of the distributed data stream. These techniques permit
to increase the stability of peer-to-peer live streaming and their application is part
of our mathematical models. Subsection 2.1.3 introduces the concepts of distribution
trees and topologies. Furthermore, the different approaches to create and manage these
structures are investigated. Finally, Subsection 2.1.4 points out topology-independent
aspects influencing the stability of peer-to-peer live streaming systems.

2.1.1. Purpose and Components

In the recent years, the distribution of realtime-generated multimedia content over
the Internet has received constantly increasing popularity. Consequently, by now,
the Internet is regarded as a natural distribution channel for live press coverage of
important events (e.g., [Aka]), both by content providers and end-users. Furthermore,
a wide range of standard television channels is available directly from the channel’s
website or on IPTV platforms as [PPt] or [Zat].

However, the adoption of this new and low-priced distribution channel introduces a
number of fundamental technical problems. One of the main issues is caused by the
characteristic traffic pattern of such a multicast, where a large number of participants
retrieve the constantly-changing and timing-sensitive data stream from a single source
for a prolonged period of time.

Consequently, each implementation based on a classical unicast client-server approach
has to suffer from a severe scalability problem. Both computational and bandwidth
resources of such a server are inherently limited (and expensive).
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(a) Client-server distribution pattern.

s

p
ee

rs

(b) Peer-to-peer distribution pattern.

Figure 2.1.: Examples of client-server and peer-to-peer distribution patterns.

A suitable solution for this problem would lie in the use of IP Multicast [Dee92]. With
this standardized technique, the source sends only one copy of its data stream, which
is then forwarded and replicated at network layer. For this, a multicast tree is formed
whose inner nodes are cooperating Internet routers. However, the decentralized organi-
zation of the Internet, the limited number of available multicast group addresses, and
open questions about authentication and billing have prevented a wide-spread adoption
of this technique. Consequently, it must still be regarded as generally unavailable.

A ready-to-use multicast solution is offered by live streaming systems based on
the peer-to-peer approach. Originally used mainly for file-sharing applications, this
approach advocates the active participation of clients in the distribution process
(cmp. Figure 2.1(b)). These participants, named peers, profit from the system and, in
exchange, contribute their computational and bandwidth resources. In the particular
case of peer-to-peer live streaming systems, the source makes the stream data available
to a subset of peers, which then recursively initiate a redistribution among the whole
set of peers. Consequently, such a system is able to overcome the scaling limitations of
the source, given that the peers possess a certain minimum amount of resources.

The actual transfer of data is based only on pairwise unicast communication.

Not to add another scalability bottleneck, such peer-to-peer systems usually exhibit
a decentralized organization without a participant possessing information about the
complete system state.

However, to allow new peers to join the running system, it is necessary to supply them
with contact information about existing peers. While for small numbers of peers this
task is usually carried out by the source, larger systems rely on specialized bootstrapping
servers. These maintain the addresses of a sample of active peers and provide them on
request.
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2.1. Peer-to-Peer Live Streaming Systems

2.1.2. Stream Encoding

Since the Internet is a packet-based network, the continuous multimedia data stream
has to be split into blocks (sometimes called chunks) of fixed size. It is then possible to
distribute these blocks to the peers, which can reassemble the original data stream as
soon as they receive all blocks.

However, the Internet and peer-to-peer systems are unreliable distribution channels,
so that losses may occur on the transfer. While these could be handled by requesting a
retransmission, the arising delays are hard to reconcile with the strict timing require-
ments of live media streams. Due to this reason, the stream data blocks are usually
encoded to mitigate the consequences of such losses.

A frequently proposed technique is Multiple Description Coding (MDC) [Goy01].
Here, each stream data block is encoded into k ∈ N subblocks, so that the reception of
any combination of these subblocks still suffices to play back the stream. In particular,
the user-perceived quality gracefully degrades with the number of lost subblocks. This
way, a certain amount of losses becomes tolerable, while the redundancy in the encoded
stream is very small. The latter is especially important, since the overall bandwidth
resources are a limiting factor of peer-to-peer systems, too.

As an alternative, Forward Error Correcting (FEC) codes [MS93, LMS+97] can be
applied to the stream blocks. Here, a block is encoded into k ∈ N subblocks and there is
z ≤ k, such that the original block can be reconstructed from any combination of at least
z subblocks. However, the complete stream data is lost if less than z subblocks arrive
at a peer. Another drawback of FEC codes is that, due to the necessary redundancy,
the encoded stream has a considerably higher bitrate than the original stream data.
Nonetheless, FEC codes are frequently applied, since the ability to reconstruct the
complete original stream blocks is especially useful in the multi-layered distribution
process of peer-to-peer live streaming system. With its help, peers can redestribute
data which would otherwise have been lost due to problems at their predecessors in
the system.

As a third option, a peer-to-peer streaming system can apply Network Coding
techniques [OSV09]. Again, a stream block is split into k subblocks, but participants
can decide to distribute (e.g., linear) combinations of these blocks. Such a dynamic
encoding can be used for forward error correction, but also to overcome network
bottlenecks. However, to profit from such an approach, a peer-to-peer system must
either give its peers great liberty in their choice of forwarded data and receiving peers,
or contain altruistic peers which are not interested in decoding the stream themselves.
Although there are peer-to-peer live streaming systems meeting these conditions (e.g.,
[GZL03, WL07]), the push-based multitree systems (to be introduced in Section 2.1.3)
on which we will focus in this thesis do not. For this reason, Network Coding techniques
will not be further considered.

2.1.3. Distribution Trees and Topology Management

Assuming a static, source-based encoding of the stream, each new packet that the source
injects into the peer-to-peer live streaming system is forwarded to all participating
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peers. In particular, each peer seeks to receive the packet exactly once. Consequently,
when forming a graph with all participants as nodes and the pairwise connections
crossed by the replications of such a packet as edges, we obtain a distribution tree. This
tree is rooted at the source and its edges are directed towards its leafs.

There are two basic competing concepts to organize such distribution trees in a
peer-to-peer live streaming system.

The mesh-based (also named pull-based) approach, as adopted by [ZLLY05, PPt,
MR07] and many more, is technically very similar to peer-to-peer file sharing systems.
The source and the peers are arranged in a connected graph, called the overlay. In this
graph, each participant has a relatively small number of neighbors. Additionally, the
participants have local memory of constant size, named buffer. It contains the newest
stream packets they are possessing and neighbors regularly exchange descriptions of
their available packets. This way, a peer can identify lacking packets in its neighbors’
buffer and actively requests their forwarding.

This easy-to-implement approach guarantees a continuous adaption to overlay changes
and can theoretically result in a large number of different distribution trees for the sent
packets. However, measurements [WLX08] show that the variance between the actually
used distribution trees is quite limited. This fact motivated systems like [MR07], trying
to increase this variance by letting the source partition its neighbor set and enforcing
that different packets are forwarded to these neighbor subsets.

Although wide-spread in practical applications, mesh-based peer-to-peer live stream-
ing systems have severe drawbacks, since the interactive distribution protocol leads to
high forwarding overhead, unpredictable packet delivery times, and long delays. Each of
these points critically contrains their usefulness for the distribution of timing-sensitive
live multimedia data.

In contrast, fast and predictable forwarding with minor control overhead are features
of the tree-based (also named push-based) approach. Here, peers arrange in static tree
structures that are maintained for the whole time of system operation. The stream
packets are then sent along these predefined trees. In particular, upon the reception
of a new packet, a peer immediately starts to retransmit the data to its downstream
neighbors in the same tree.

While the initially proposed systems [GJKJ00, CDKR02, CRSZ02, BBK02, THD03,
Cha03, TJD+05] relied only on a single static distribution tree, by now the use of mul-
tiple distribution trees is predominant [PWCS02, CDK+03, VYF06, BSS09]. Systems
following this approach are also called multitree systems. They offer a higher number
of paths between the source and each peer, which dramatically increases the system’s
stability when the different trees are used to distribute the subblocks of an MDC or
FEC encoded stream block. Furthermore, a higher number of trees allows to split the
stream data into smaller portions, called stripes. Since the minimum upload bandwidth
necessary to forward a stripe is only a fraction of the stream bandwidth, it becomes
easier to integrate peers with asymmetric bandwidth capacities.

The set of distribution trees of a tree-based peer-to-peer live streaming system forms
its distribution topology. In this thesis, we will call both a static distribution tree and
the share of information transmitted over it a stripe.

The downside of the tree-based approach is that the sudden exit of a peer in an
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2.1. Peer-to-Peer Live Streaming Systems

important tree position can lead to considerable down-times in the corresponding
subtree due to repairs. Consequently, sophisticated repair mechanisms need to be
applied [FY07, BFGS09a]. Generally, tree maintainance costs evolve, which clearly
grow with the amount of change in the peer set. However, the involved topology
awareness can be further utilized.

A distribution topology reflects the individual relationships of packet reception and
redistribution between the stream source and the participating peers. It therefore
models the core mechanisms determining the service parameters of the streaming
system, including – as we will see later – its vulnerability against different kinds of
failures and attacks.

Due to this fact, push-based peer-to-peer live streaming systems should actively
improve their distribution topology over time. During this process, a streaming system
will aim to build a topology that is optimal considering one or several optimization
goals. One of the central contributions of this thesis lies in the identification and study
of classes of topologies, that are – in a specific sense – optimally stable. The actual
notions of stability that are considered, are motivated by attacks on and failures in
real-world streaming systems. They will be legitimated in Section 2.3.

Proposed mechanisms for a distributed topology management include global schemes
assigning peer positions based on random peer-identifiers [CDK+03], incremental
optimization of peer-local cost functions [Str07, BSS09], and the application of Network
Motifs [KAS10].

Recently, there is an increasing number of hybrid approaches, trying to combine
the advantages of both mesh- and tree-based systems. Such a hybrid system can
either start with a mesh-based approach and then switch to automatic forwarding
on long-term relationships between peers (e.g., [LMSW07, WLX08, WXL10, WLX11])
or it forms an explicit static distribution topology that is combined with mesh-based
backup mechanisms in the case of failures (e.g., [YLY+04, ZZSY07, PPK10]). Since
both approaches form static distribution trees spanning over either the long-living or
all peers, the results of this thesis are equally relevant for this emerging category of
peer-to-peer live streaming systems.

2.1.4. Further Aspects of Peer-to-Peer Live Streaming System
Stability

Although this thesis focuses on the connections between distribution topologies and
system stability, there are a number of further measures improving the stability of
peer-to-peer live streaming systems. Many of them aim at securing the interactions of
peers that lead to the formation of the distribution topology. In that, they are more
specific to certain system implementations.

In [BFGS09a], the author of this thesis participated in an investigation of the design
of topology management mechanisms that are resistant to malicious manipulations
initiated by peers. Necessary features include a cautious use of unconfirmed performance
data obtained from single peers, a source-directed flow of topology information, peer-
selection strategies based on long-term information, and proactive preparations for the
loss of important peers (e.g., see also [FY07]).
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In this context, especially the peer selection strategies are an active field of research.
In [TWSN08, VS10, KSU11] peer lifetime models are stated that aim at predicting
the probability of an approaching peer exit. Other solutions assign a global trust
or reputation value to each peer, growing with its service to the streaming system
[WXZJ06, RSS07]. Due to the shorter pairwise relationships, this is especially important
when a mesh-based approach is adopted [HvR08, SSNRR10]. If such reputation systems
are combined with admission control mechanisms, it is also possible to ban malicious
peers from the system [XZ06, ZYL+07].

A connected topic is the introduction of incentives, motivating selfish peers to
contribute more bandwidth resources to the streaming system (e.g., [SFC08, PPK10]).
Such mechanisms indirectly improve system stability by providing higher flexibility
for the topology construction and decreasing the dependence on single bandwidth-
contributors. As a complementing approach, it was also proposed to dynamically adapt
the source’s bandwidth capacity [FKGS11, SIB12] by ways of virtualization or cloud
support.

Since none of these approaches directly influences the actually formed distribution
topology, they could be smoothly integrated in a peer-to-peer live streaming system
that aims at building stable distribution topologies as identified in this thesis.

2.2. A Model For Distribution Topologies of P2P Live
Streaming Systems

The tool enabling all our analysis and results is a graph-based mathematical model
of peer-to-peer distribution topologies. Its elementary ideas first occured in [BSS09]
and were later extended and adapted by the author. Note that this section restricts
to the very basic parts of our model and that the Chapters 3–6 will add additional
components where necessary. This approach will support readers who are interested in
only specific aspects of topology stability and keeps definitions local.

2.2.1. Notations and Specifications

Before introducing the actual model, let us fix some notations and concepts of basic
mathematical objects. To avoid common ambiguities, we define the set of natural
numbers

N := {i ∈ Z | i ≥ 1} (2.1)

as the set of integers of value at least one. Furthermore, given a, b ∈ Z, we define the
integer interval with borders a and b as

[a, b] := {i ∈ Z | a ≤ i ≤ b} (2.2)

and write
[a] := [1, a]. (2.3)

We assume basic knowledge of the concepts of Graph Theory. A thorough introduction
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on this topic can be found in [Die05]. If the meaning is evident from the context, we
will use the word graph for both simple graphs and multigraphs.

For a multigraph G = (V,E) and x, y ∈ V , the multiplicity mG(x, y) denotes the
number of parallel edges {x, y} in E. The multiplicity of two node sets X,Y ⊆ V is

mG(X,Y ) :=
∑
x∈X

∑
y∈Y \X

mG(x, y). (2.4)

Finally, the multiplicity of a single node v ∈ V is mG(v) := mG ({v}, V ). In a simple
graph, it coincides with the degree of v. A multigraph G = (V,E) is called r-regular, if
it holds that ∀v ∈ V : mG(v) = r.

A multigraph G = (V,E) is a clique, if ∀u, v ∈ V : u = v ∨mG(u, v) ≥ 1. In case of
equality, it is called a simple clique.

Given G = (V,E) and X ⊆ V , we denote the submultigraph of G induced by X as
G[X]. Furthermore, the number of edges in G[X] is denoted as

eG(X) :=
1

2

∑
v∈X

mG[X](v). (2.5)

When speaking about properties of algorithms and computational problems, the word
complexity is usually referring to the concept of time complexity [Weg05]. Furthermore,
an algorithm is called efficient, if it runs in a time that is polynomial in the length
of the input in a binary representation. If considering computational problems for
which the length of a solution is at least polynomial in the highest numeric value of the
input (i.e., it is pseudopolynomial), we also regard pseudopolynomial-time algorithms
as efficient.

2.2.2. Basic Topology Model

Following the discussion in Section 2.1.3, the distribution topology of a push-based
peer-to-peer streaming system consists of one or multiple trees that are rooted at the
source node and span over all participating peers. In this thesis, we assume that the
stream data is split into k ∈ N substreams called stripes. Each stripe is distributed over
a corresponding distribution tree. Such a tree is also called stripe tree or just stripe.

Definition 2.2.1 Distribution Topology T
Given k ∈ N and a node set V , a distribution topology T of k stripes over node set V
is a k-tuple T := (T1, . . . , Tk) of directed trees, each rooted at the same distinguished
node s 6∈ V , containing exactly the nodes {s} ∪ V , and with edges that are directed
towards the tree leafs. A tree Ti from T is also called stripe i. The nodes V are
called peers.

Abusing notation, we will sometimes interpret a topology T as a multiset of stripe
trees and write T ∈ T to denote that T is a tree of T .

To obtain a model that is both compact and meaningful, we make a number of
abstractions from real-world streaming systems:
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• Idealized Underlay Topology : In applied peer-to-peer live streaming systems, peers
correspond to nodes in an underlying communication network, e.g., the Internet.
A peer u can communicate with a peer v if there is a u→ v path in this network.
Hence, for peer-to-peer streaming to be possible, we can assume that this network
is at least weakly connected and that there is a path from the source to each
participating peer.

However, usually the network is much more densly connected, as today’s commu-
nication network protocols rely on bidirectional communication. Especially when
considering the IP-based Internet, the graph of pairwise reachability of nodes
contains a large clique. Here, the biggest problem in reachability is posed by
the existence of subnetworks using Network-Address-Translation (NAT), thereby
allowing bidirectional connections only when they are initiated from a node
inside the subnetwork. However, there are a number of techniques (e.g., [FSK05],
[WSHW08]), helping peer-to-peer systems to initiate connections also in the
presence of NAT gateways.

Due to these reasons, in this thesis, we will generally assume complete pairwise
reachability of all participating nodes. Furthermore, we will not include the under-
lying communication network in our model. However, note that the author also
contributed to [FKGS11, FDGS11], where topics of overlay/underlay-interactions
were considered.

• Static System Parameters: Real-world peer-to-peer streaming systems are dy-
namic systems with a constantly changing set of peers. Therefore, the topologies
of real-world peer-to-peer streaming systems are subject to change, too. How-
ever, between each two consequtive changes, the system is in a static state. For
each such state of static system parameters, the topology management aims at
constructing a topology that is in some sense optimal. Hence, to gain optimality
for the dynamic system, we can break these dynamics down into a sequence of
static states and study what characterizes optimal topologies when the system
parameters are unchanged. Due to this reason, in this thesis, we fully concentrate
on finding optimal topologies in situations without changing topology parameters
and without peer dynamics.

We now introduce our tools to describe distribution topologies.

Depth, Depth Levels, and Heads Let T be a distribution topology with k stripes
on node set V and let T ∈ T . The depth dT (v) of a node v ∈ V in tree T is
specified by the number of edges on the unique s → v path in T . The depth of tree
T = ({s} ∪ V,E) is defined as d(T ) = maxv∈{s}∪V dT (v) and the depth of topology T is
d(T ) = maxT∈T d(T ).

For i ∈ [0, |V | ], the depth level i of tree T is

Li(T ) := {v ∈ V | dT (v) = i} (2.6)
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(a) Topology T

Property Value

d(T ) 3
HT1 {1, 2}
HT {1, 2, 3}
L2(T ) {(4, 1), (2, 2), (4, 2)}

predT2 (4) {s, 1, 4}
succT2 (3) {2, 3}

succT→2 (3) {2, 3}
succT→1 (3) ∅

(b) Selected Properties of T .

Figure 2.2.: A distribution topology T = (T1, T2) and some of its properties.

and the depth level i of topology T is the disjoint union

Li(T ) :=
⊔
T∈T

Li(T ), (2.7)

e.g., it holds that |Li(T )| =
∑
T∈T |Li(T )|.

We will see, that the nodes of depth one play a very important role for the stability
properties of T . Therefore, we will call these nodes the heads of topology T . For each
stripe Ti ∈ T , we define the set

HTi := L1(Ti) (2.8)

and call
HT :=

⋃
Ti∈T

HTi (2.9)

the head set of T . Note that HT is not a disjoint union.

Predecessors and Successors The nodes V can be of different relevance to the
topology T . Although depth already gave us a notion of such relevance, it is better
characterized by predecessor and successor relationships of nodes.

Definition 2.2.2 Predecessor Sets
Let T = (T1, . . . , Tk) be a distribution topology on node set V and let v ∈ V .

The predecessor set of v in stripe i of T is defined as

predTi (v) := {s, u1, . . . , ul, v},

such that (s, u1, . . . , ul, v) is the node order on the s→ v path in Ti.
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Definition 2.2.3 Successor Sets
Let T = (T1, . . . , Tk) be a distribution topology on node set V and let v ∈ V .

The successor set of v in stripe i of T is defined as

succTi (v) := {u ∈ V | v ∈ predTi (u)}.

Furthermore, for X ⊆ V , we define

succTi (X) :=
⋃
v∈X

succTi (v).

Note that these definitions imply ∀i ∈ [k] : v ∈ predTi (v) ∩ succTi (v).

A special subset of succTi (v) is the set of v’s children

childTi (v) := {u ∈ succTi (v) | (v, u) is edge in Ti}. (2.10)

Additionally, we define the one-element-set

parentTi (v) := {u ∈ predTi (v) | v ∈ childTi (u)}. (2.11)

The above sets are sufficient to give a complete formal description of the topology T .
However, the following, slightly different notion of successor sets will be useful in the
Chapters 4 and 5.

Definition 2.2.4 Forward Successor Sets
For a distribution topology T = (T1, . . . , Tk) on node set V and v ∈ V , define the
forward successor set of v in stripe i of T as

succT→i (v) :=

{
succTi (v) , if |succTi (v)| > 1 ∨ v ∈ HTi
∅ , otherwise.

Furthermore, for X ⊆ V , we define succT→i (X) :=
⋃
v∈X succT→i (v).

In contrast to the successor set of node v in stripe i, the forward successor set is empty
if v neither forwards nor is head in stripe i. By specially treating heads, we guarantee
that ∀i ∈ [k] : succT→i (HTi ) = V .

Figure 2.2 recapitulates the above definitions in an example.

2.2.3. Classes of Distribution Topologies

When studying distribution topologies, it will be useful to specify sets of distribution
topologies with similar parameters. In the context of this thesis, we will denote such
sets as classes of distribution topologies.
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Definition 2.2.5 Bandwidth-Restricted Distribution Topologies
Let n, k ∈ N be given, let V = [n] be a set of nodes and let s be a distinguished
source node with s 6∈ V . For a capacity function c: {s} ∪ V → N ∪ {∞} specifying
a maximum out-degree per node, the class of Bandwidth-Restricted Distribution
Topologies T(n, c, k) is defined as the set of distribution topologies with k stripes,
source node s, node set V , and the property

∀v ∈ {s} ∪ V :
∑
i∈[k]

|childTi (v)| ≤ c(v).

In this definition we implicitely assume that all stripes of a stream have equal bandwidth
demands. If the streaming system is distributing data stemming from an MDC- or
FEC-encoded multimedia stream (cmp. Section 2.1.2), this is a common abstraction.

Since a distribution topology is a set of k trees over V ∪ {s} rooted at s, such a class
will be empty if c(s) < k (less than k stripes can be rooted at s) or c(s)+

∑
v∈V c(v) < kn

(k trees on n+ 1 nodes need kn edges).
In many cases, we will not impose limiting bandwidth assumptions for peer nodes, since

we will be interested in topology properties that are independent of these limitations.
Clearly, a class without bandwidth restrictions for peer nodes will also contain all
topologies that would have met a certain restriction.

Furthermore, in most parts of this thesis, we will make the assumption that the
source node is able to transmit the whole stream (i.e., all k stripes) exactly C times for
a C ∈ N. Thus, it holds that c(s) = Ck.

Combining these assumptions, we define our standard class T(n,C, k) of distribution
topologies.

Definition 2.2.6 The Class T(n,C, k)
For C, k ∈ N and n ≥ Ck we define

T(n,C, k) := T(n, c, k)

with

c(v) :=

{
Ck , if v = s,

∞ , otherwise.

The Parameters n, C and k in Real-World Applications In practical peer-to-peer
streaming systems, we can assume that n� Ck, since measurements [SMZ04, WLZ08,
WLX08] indicate that popular daily streams attract multiple tens of thousands of
concurrent users and that the general demand for live multimedia streaming is rapidly
growing. In particular, the server-based Content Distribution Network Akamai an-
nounced that it delivered live streams of the Soccer World Cup 2010 and Great Britain’s
2011 royal wedding, both, to over 1.6 million concurrent clients [Aka].

More interesting are the parameters C and k, which can be directly influenced by the
operator of the streaming system. Here, C and k correspond to very different aspects
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of the system. While C is determined by the bandwidth and computational resources
of the source node (or the monetary resources of the organization paying for both), the
parameter k is essentially limited by the bitrate of the distributed stream and subject
to a difficult trade-off.

On the one hand, splitting the stream into a high number of stripes minimizes the
bandwidth burdens for peers distributing a stripe. Thus, it involves even nodes with
minor upload bandwidth and allows for a high number of children. Therefore, the
individual stripe trees can be built with small depth. Furthermore, as we will see in the
Chapters 3–5, a high parameter k can translate into an increase of topology stability
towards deliberate attacks.

On the other hand, the granularity of the applied stream encoding techniques (cmp.
Section 2.1.2) is limited. Furthermore, the maintainance of a higher number of stripe
trees not only demands for additional computing resources, but also constantly worsens
the proportion of actually transmitted streaming data to the necessary overhead of
control data that has to be sent.

2.3. Notions of Stability: Measuring an Ambiguous
Concept

We should now give a clear specification of one of the most central concepts of this
thesis: our exact interpretation of the term stability.

When studying the scientific literature, we encounter a multitude of different notions
of the stability of peer-to-peer streaming distribution topologies. Terms like stability,
resilience, and robustness are brought up and either interpreted as synonyms or
beheld as completely different concepts. Frequently, analysis of topology stability is
mixed (or confused) with analyses of the behavior and security of the management
mechanisms of peer-to-peer streaming systems and their actual implementations (e.g.,
cmp. Section 2.1.4). Furthermore, the confusion peaks when it comes to measuring
and quantifying each of these concepts.

The reasons for this unsatisfactory state lie in the high complexity and ambiguity
of the modeled object itself. Peer-to-peer streaming systems have many different
applications, which lead to diverse and possibly conflicting sets of demands.

Consequently, there can be no one-fits-all concept of distribution topology stability.
Therefore, we will study several different notions of stability in this thesis. However, in
doing this, we will always pursue the following approach.

In general, we will interprete distribution topology stability as a property by which
distribution topologies can be categorized according to the consequences of certain
kinds of disruptive events. The incarnation of such an event is the sudden removal of a
set of nodes from the distribution topology. Depending on the circumstances under
which such a removal occurs, we will call the event (and the removed node set) either
an attack or a failure. This distinction determines the evaluation of an event’s impact:

• An attack is a deliberate and malicious attempt to create a maximum degree of
non-functionality inside the streaming system, which is measured as damage. An
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attack is planned and carried out by an entity called the attacker. The attacked
node set is chosen based on information about the distribution topology and its
cardinality is limited by the resources of the attacker.

Notions of stability that are based on attacks will generally be called attack-
stability. We will see that different notions of damage (introduced in Section 3.1)
lead to very different notions of attack-stability. Nonetheless, they are all based
on worst-case assumptions about the information and the planning resources of
the attacker.

We will study attack-stability from different perspectives. In Section 3.2, we
investigate the complexity and approximability of problems aiming to find resource-
efficient attacks. In contrast, the Chapters 4 and 5 are devoted to the identification
of topologies that minimize the maximum damage that an attack can achieve on
them.

• A failure corresponds to the unexpected removal of a set of nodes due to coin-
cidental malfunctions, loss of interest, or for other unplanned reasons. In that,
a failure is an uncoordinated event. The consequences of a failure can again be
measured as damage. However, here an average-case perspective is adopted.

Node failures and their consequences can be modeled by a random process.
Topology stability concerning such random failures will be the topic of Chapter 6.
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Attack Problems

Following the discussion in Section 2.3, in this chapter we start our analysis of the
attack-stability of peer-to-peer live streaming distribution topologies.

For this, Section 3.1 first presents an abstract model of attacks on these systems.
Distribution topologies are used to measure the negative effects of such attacks. Their
consequences are studied with both a global view on the system and a local view on
the perceived streaming quality of individual peers. The definitions of this section also
provide the basis for our analysis in the Chapters 4 and 5.

The second part of this chapter is dedicated to the study of attack problems on
distribution topologies. In particular, we investigate the complexity and approximability
of computational problems posed to a well-informed attacker with limited attack-
resources. This is the topic of Section 3.2. Such an approach contributes to our
study of attack-stability, since it allows to identify factors complicating the planning of
resource-efficient attacks. The results of this chapter are summarized in Section 3.3.

3.1. Quantifying the Consequences of an Attack

In real-world peer-to-peer live streaming systems, there are numerous different pos-
sibilities to attack and disturb the functionality of stream distribution. Surveys
[Fis12, GCM11] distinguish between attacks initiated by peers, external parties (e.g.,
Botnets) or a combination of both. The medium of attack can be resource-exhaustion,
exploitation of incorrect implementations, a coordinated stop of stream forwarding,
tampering with stream data (which both have equal consequences if the stripes are
authenticated by cryptographic means), Sybil- and Eclipse-attacks, and many more.

The demands that such a situation poses on the design of dynamic topology manage-
ment mechanisms have been studied under participation of the author in [BFGS09a].

However, in this thesis we choose an abstracting approach that unifies the actual
effects of all these real-world attacks in a simple but powerful model. In particular, we
will interprete an attack simply as a set of nodes that are removed from the topology.

Definition 3.1.1 Attack X
Given a distribution topology T on node set V , an attack on T is a set X ⊆ V .

Such an attack is chosen by the attacker based on information about the topology T
and is limited in its cardinality by the resources of the attacker.

In general, we will follow the worst-case assumption that the attacker has knowledge
of the complete topology T . All hardness results on attack problems and all stability
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results for topologies that are obtained under this assumption will equally hold for
attackers with only partial knowledge.

Note that we explicitly exclude the source s from being attacked. This specification is
necessary, since otherwise any attack containing the source would break the functionality
of the complete streaming system, regardless of the system’s topology. Besides implying
equal stability of peer-to-peer streaming systems and server-based streaming, this would
hinder us to study the attack-stability of the distribution topology itself. Furthermore,
this assumption is reasonable, since in the practical application of peer-to-peer live
streaming systems, the great majority of peer nodes belongs to end-users and will be
much more vulnerable to an attack than the explicitly secured source infrastructure.

Given a topology T ∈ T(n,C, k) and an attack X ⊆ V on T (note that V is defined
by the class T(n,C, k)), we can now quantify the damage that the removal of the nodes
X will do to T . We will distinguish three different types of damage, which are all
motivated by real-world applications.

The most simple damage measure is the packet loss or LiSS-damage. The definition
used here, first occured in [BSS09].

Definition 3.1.2 LiSS-Damage / Packet Loss aT (X)
Given a topology T ∈ T(n,C, k) and an attack X ⊆ V on T , the packet loss or
LiSS-damage of X is defined as

aT (X) :=
∑
i∈[k]

|succTi (X)|.

Figure 3.1 gives an example. This damage function counts the number of source-to-peer
paths in T that are disturbed by the removal of the nodes X from T . It holds that
0 ≤ aT (X) ≤ kn. Since none of the lost paths can be used for the reception of
the next packets sent along the stripes, aT (X) is sometimes called the packet loss
measure. Furthermore, the function was, historically, named LiSS-damage due to its
close connection with the Minimum Live Streaming Stability Problem (LiSS). The
latter will be studied in Section 3.2.

The LiSS-damage gives a good global impression on topology damage, but it neglects
the effects that an attack has on individual peers. Although two attacks X and Y
on a topology T may lead to the same global packet loss, it is possible that the loss
of incoming paths is distributed very differently on the peer nodes. For example,
every single peer of T might lose only a few stripes due to attack X, whereas Y
might concentrate the same packet loss on a small number of nodes. Depending on
the encoding technique of the stream (see Section 2.1.2), these attacks will result in
very different receptions of service quality for the individual peer nodes. If Multiple
Description Coding is applied, a multimedia stream received in only a subset of stripes
continues to be playable and just loses quality depending on the number of lost packets.
With Forward-Error-Correction encoding, it is even possible to completely compensate
the loss of a certain fraction of packets.

These ideas are reflected in the definition of LoSS- and FEC-LoSS-damage. At
first, we determine the number of trees in which a node v ∈ V can be reached from the
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source despite the removal of X:

incTX(v) := |{Ti ∈ T | v 6∈ succTi (X)}| (3.1)

If the s → v path in tree Ti is disturbed, we informally say that v has lost stripe i.
Assuming that T ∈ T(n,C, k) and given a number z ∈ [k] of stripes, we can then define
the Lost Service Set under Multiple Description Coding LMDC

X,z as the set of nodes which
have lost at least z of their k stripes

LMDC
X,z := {v ∈ V | incTX(v) ≤ k − z}. (3.2)

Hence, we can express a level of tolerance towards stripe loss at individual nodes and
declare a node as damaged as soon as it has lost at least z stripes.

Definition 3.1.3 LoSS-Damage bT (X, z)
Given a topology T ∈ T(n,C, k), a service loss threshold z ∈ [k], and an attack
X ⊆ V , the LoSS-damage of X is defined as

bT (X, z) := |LMDC
X,z |.

Again, the name LoSS-damage originates from a connection with the Minimum Local
Streaming Stability Problem (LoSS) which will be studied in Section 3.2.

Finally, when considering an FEC encoding of the stream, each peer can reconstruct
the whole stream data in spite of the loss of up to z − 1 of the total k stripes. The
value of z is chosen by the operator of the streaming system as a trade-off between
error-correction capability and consumption of additional bandwidth resources. With
such an encoding, a peer v can redistribute a stripe i albeit some of its predecessors
in Ti have been attacked. The precondition for such a reconstruction is that v still
receives at least k − z + 1 other stripes.

To model this situation, we introduce the predicate

availTX,z,N (v, i) :=



1 , if v 6∈ succTi (X)

1 , if v ∈ succTi (X) \X ∧ (v, i) 6∈ N ∧(
availTX,z,N∪{(v,i)}

(
parentTi (v), i

)
= 1 ∨∑k

j=1 availTX,z,N∪{(v,i)}(v, j) > k − z
)

0 , otherwise.

(3.3)

Called with N = ∅, it determines whether stripe i is available at node v assuming
attack X and service loss threshold z. If v is not a successor of an attacked node in
Ti, the predicate has the value 1. Otherwise, it is also 1 if v is not attacked itself
and either stripe i can be obtained from v’s parent in Ti or more than k − z stripes
are available at v. In the evaluation, the set N is used to break cyclic dependencies.
With the help of availTX,z,N (v, i), we define the Lost Service Set under Forward Error
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Correction LFEC
X,z as

LFEC
X,z :=

{
v ∈ V

∣∣∣ k∑
i=1

availTX,z,∅(v, i) ≤ k − z
}
. (3.4)

LFEC
X,z contains all the nodes that, after the removal of X from T , are no longer capable

to decode the stream. Its cardinality will serve as our third damage measure.

Definition 3.1.4 FEC-LoSS-Damage becT (X, z)
Given a topology T ∈ T(n,C, k), a service loss threshold z ∈ [k], and an attack
X ⊆ V , the FEC-LoSS-damage of X is defined as

becT (X, z) := |LFEC
X,z |.

Both FEC-LoSS- and LoSS-damage count nodes having lost at least z stripes. Since
the latter does not account for stripe reconstruction capabilities, we obtain the following
relation:

0 ≤ becT (X, z) ≤ bT (X, z) ≤ n. (3.5)

Furthermore, on a topology T ∈ T(n,C, k) of depth at most 2, for every X ⊆ V and
every z ∈ [k], it holds that

incTX(v) ≤ k − z ⇔ v ∈ X ∨ |{i ∈ [k] | parentTi (v) ∈ X}| ≥ z (3.6)

⇔
k∑
i=1

availTX,z,∅(v, i) ≤ k − z. (3.7)

Consequently, LoSS- and FEC-LoSS-damage are equivalent in this case.

Figure 3.1 recapitulates all defined types of damage in an example.

These formal, yet practically motivated damage functions are the basis for all our
further studies on attack-stability. In particular, Section 3.2 will investigate the influence
of the damage function on the computational complexity and approximability of a
problem imposed to resource-limited attackers: Given a topology and certain parameters
of an attack, including a damage threshold, find an attack of minimum cardinality
that satisfies the damage threshold. Additionally, in Chapters 4 and 5 we will study
distribution topologies minimizing, for all x ∈ [n], the maximum possible LiSS- resp.
LoSS-damage that an attack of cardinality x can impose on them.

Clearly, it is furthermore possible to study less abstract attack models, which account
for more details of practical peer-to-peer streaming systems. Such an approach was
followed by a bachelor thesis [Hol10] that was supervised by the author. Here, the
properties and applicability of a model explicitly considering bandwidth-exhaustion
attacks and the packet loss that is correlated with them were investigated. However, such
increasingly complex models are very hard to analyze. Furthermore, their specificity
leads to less general results.
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(b) LoSS-damage

s

3

7 2

1

5

6

4

s

2

1

3 4

5

6 7

s

6

1

7

3

4

2

5

T1 T2 T3

(c) FEC-LoSS-damage

Figure 3.1.: Example of damage measures. With z = 2, the attack X = {2, 5, 7}
leads to (a) 16 packets not reaching their destination, (b) nodes
LMDC
X,z = {2, 3, 4, 5, 6, 7} losing service when using MDC, and (c) nodes

LFEC
X,z = {2, 5, 6, 7} losing service when using FEC. Attacked nodes are

marked dark gray, damaged nodes with a lighter gray.
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3.2. Complexity and Approximability of Attack Problems

In this section, we investigate the hardness of computational problems that are posed
when planning an attack on a distribution topology. We will see that this hardness
is determined by the applied damage function and the parameters of the attacked
topology.

A motivation of our approach and the definition of the studied attack problems are
given in Subsection 3.2.1. The subsequent Subsection 3.2.2 introduces the necessary
background on computational complexity and approximability. Then, the complexity
and approximability of the attack problems for LiSS-, LoSS-, and FEC-LoSS-damage
is analyzed in the Subsections 3.2.3, 3.2.4, and 3.2.5, respectively.

3.2.1. Attack Problems

The studied attack problems are the essential optimization problems posed to a well-
informed but resource-restricted attacker:

Given a distribution topology and attack parameters including a damage
threshold, we want to find an attack of minimum cardinality that satisfies
the damage threshold.

Additional to their relevance from a theoretical point of view, the results of such a
study give interesting insights for practitioners as well. In particular, we are able to
analytically qualify the influence of the damage function, topology parameters, and the
applied stream encoding on the difficulty of the problem of planning “good” attacks on a
topology. Especially, we show that the respective search versions of the attack problems
are NP-complete for all damage measures of Section 3.1. Under the assmption P 6= NP,
we identify limitiations on the solution quality that can be guaranteed by attackers
restricted to reasonable, i.e., polynomial-time, computing resources. Additionally, we
point out polynomial-time algorithms that can at least guarantee certain bounds on the
solution quality. All these results are particularly interesting, since they demonstrate
that the existence of multiple trees significantly hardens the problem of finding “good”
attacks on push-based peer-to-peer live streaming systems.

We see that the approach of this section also provides us with insights about desireable
topology properties. Analyzing the results, we can identify properties that complicate
the planning of a successful attack.

Furthermore, the goal of building attack-stable topologies can sometimes conflict
with other topology requirements such as distribution efficiency (see [Str07, BSS09]).
Here, by providing a notion of practical difficulty of optimal attacks, it becomes possible
to qualify their threat. Thus, we obtain a basis to evaluate necessary trade-offs between
topology stability and practicability of a streaming system.

The results of this section are published in [GFBS11].

Let us now formally state the attack optimization problem for each of the damage
types from Section 3.1.
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Definition 3.2.1 Minimum Live Streaming Stability (LiSS)
Given a distribution topology T ∈ T(n,C, k) and damage threshold t ∈ [kn], find an
attack X ⊆ V with aT (X) ≥ t and minimum cardinality.

Definition 3.2.2 Minimum Local Streaming Stability with MDC (LoSS)
Given a distribution topology T ∈ T(n,C, k), a service loss threshold z ∈ [k], and
damage threshold t ∈ [n], find an attack X ⊆ V with bT (X, z) ≥ t and minimum
cardinality.

Definition 3.2.3 Minimum Local Streaming Stability w. FEC (FEC-LoSS)
Given a distribution topology T ∈ T(n,C, k), a service loss threshold z ∈ [k], and
damage threshold t ∈ [n], find an attack X ⊆ V with becT (X, z) ≥ t and minimum
cardinality.

3.2.2. NPO Problems and (In-)Approximability

Our method of choice to study the above problems will be in terms of NPO problems,
approximability, and approximation-preserving reductions. In general, we will follow
the notation of [Cre97]. For a more thorough introduction into the topic of (in-)approx-
imability, see [ACK+00].

Definition 3.2.4 NP Optimization Problem
An NP Optimization (NPO) problem is a tuple (I, sol,m,type) such that

• I is a set of instances (or inputs),

• for x ∈ I, the function sol(x) specifies the set of possible solutions, every
solution y ∈ sol(x) is polynomially bounded in its length, and, given x and y,
the statement y ∈ sol(x) can be validity-checked in polynomial-time.

• for x ∈ I and y ∈ sol(x), the function m(x, y) ∈ N specifies the value of solution
y and is computable in polynomial time.

• type ∈ {min,max}.

Given an input x ∈ I, the function opt(x) specifies the value of an optimal solution
opt(x) := typey∈sol(x)m(x, y).

In the search version of an NPO problem, the task is to find any solution meeting a
threshold on the solution value. This threshold is an additional part of the input.

All attack problems defined in Section 3.2.1 are NPO problems: Their instances
are given by tuples (T , t) or (T , z, t), respectively. The set of solutions for an input
x containing a damage threshold t is sol(x) = {X ∈ P(V ) | f(X) ≥ t} where f(X)
corresponds to aT (X), bT (X, z), or becT (X, z). Furthermore, for all problems it holds
that m(x,X) = |X| and type = min. The length of a binary representation of each
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possible solution is O(n log n), the damage functions can be computed by tree traversals
in time O(kn) resp. O(kn2) (for the FEC-LoSS damage measure) and the cardinality
function can be evaluated in linear time.

Given x ∈ I, the solutions sol(x) can be rated by the ratio between their value and
the value of an optimal solution.

Definition 3.2.5 Approximation Ratio R
Given an NPO problem O = (I, sol,m, type), an input x ∈ I and a solution
y ∈ sol(x), the approximation ratio of y for O on input x is defined as

RO(x, y) := max

{
m(x, y)

opt(x)
,

opt(x)

m(x, y)

}
.

A deterministic algorithm A for an NPO problem O can be seen as a function mapping
inputs to solutions, such that ∀x ∈ I : A(x) ∈ sol(x). A polynomial-time algorithm is
said to have an approximation ratio of r for O if

∀x ∈ I : RO(x,A(x)) ≤ r. (3.8)

An NPO problem O is called r-inapproximable if no polynomial-time algorithm can
achieve an approximation ratio of r for O. If this inapproximability is based on the
precondition that P 6= NP and r > 1, these definitions show that the search version of
O must be NP-hard. Furthermore, it is NP-complete, because it is in NP since O is
in NPO.

Using approximation-preserving reductions [Cre97], it is possible to relate (in-)ap-
proximability results of different NPO problems. In our setting, we will always use
strict approximation-preserving reductions.

Definition 3.2.6 Strict Approximation-Preserving Reduction
Given NPO problems A = (IA, solA,mA,type) and B = (IB , solB ,mB ,type), a strict
approximation-preserving reduction A ≤strict B is a pair (f, g) of polynomial-time
computable functions, such that

• f : IA → IB ,

• for all x ∈ IA and y ∈ solB(f(x)), it holds that g(x, y) ∈ solA(x) and

RA(x, g(x, y)) ≤ RB(f(x), y).

The basic scheme of such a reduction is illustrated in Figure 3.2.

The following propositions are a direct consequence of the above definitions.
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NPO Problem A NPO Problem B

x ∈ IA f(x) ∈ IB

y ∈ solB(f(x))g(x, y) ∈ solA(x)

Figure 3.2.: Scheme of an approximation-preserving reduction [Cre97].

Corollary 3.2.7
Let A and B be two NPO problems such that A ≤strict B exists. It holds that:

• if there is an r-approximation algorithm for B, then there is an r-approximation
algorithm for A.

• if A is r-inapproximable, then B is r-inapproximable.

We are now ready to analyze the approximability of our attack problems.

3.2.3. (In-)Approximability of the LiSS Problem

The first problem studied is the LiSS problem. We show that its structure is highly
similar to the Minimum Partial Set Cover problem.

Definition 3.2.8 Minimum Partial Set Cover (Min PSC)
Given a ground set U , a set S ⊆ P(U), and a threshold t ∈ [ |U | ], determine a set
X ⊆ S of minimum cardinality such that

∣∣⋃
si∈X si

∣∣ ≥ t.
W.l.o.g, we can assume that

⋃
si∈S si = U . The Min PSC problem contains the Mini-

mum Set Cover problem as subproblem where t := |U |. Under the highly reasonable
assumption that NP 6⊂ DTIME(O(nlog logn)), it is therefore ((1− o(1)) ln |U |)-inap-
proximable [Fei98]. Under the stronger assumption that P 6= NP, it is still c ln |U |-
inapproximable for a constant 0 < c < 1 [AMS06] (the paper gives c = 0.2267, but a
number of preconditions are left unclear).

Theorem 3.2.9
If P 6= NP, the LiSS problem is c1 log(k)- and c2 log(n)-inapproximable for constants
c1, c2 > 0. Here, n is the number of peers and k the number of stripes of the input
topology.

Proof. We strictly reduce Min PSC to the LiSS problem.
Given an instance (U, S, t), the reduction function f constructs a distribution topology
T having k := |U | stripes. The node set of T contains a node si for each si ∈ S and
dummy nodes D = {d1, . . . , d|U |·|S|}, such that n = (|U |+ 1)|S|.

For an element e ∈ U , define Se := {si ∈ S | e ∈ si} and Se := S \ Se. The topology
T contains a stripe Te for each e ∈ U , such that in Te all nodes Se are children of the
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Te
s

Se Se

D

Figure 3.3.: Schematic tree Te for e ∈ U built in the reduction Min PSC ≤strict LiSS.

source and for each di ∈ D we have predTe (di) = Se ∪ {s}. This definition ensures that
the nodes Se are lined up on each path in Te that starts at the source and leads to
a dummy node. Figure 3.3 gives an example of such a tree. Finally, the function f
returns a LiSS instance consisting of topology T and damage threshold t · |D|.

Called on Min PSC instance (U, S, t) and a LiSS-solution Y ⊆ S ∪D, the function
g returns S if |Y | ≥ |S|. Otherwise, it iteratively substitutes a dummy d ∈ Y ∩D in Y
by a node si ∈ S \ Y , while Y ∩D 6= ∅. Finally, the resulting set Y is returned.

Claim 3.2.10
For every attack Y ⊆ S ∪D on T , it holds that aT (g((U, S, t), Y )) ≥ aT (Y ).

Proof. If g((U,S, t), Y ) returns S, all heads HT are removed and all k(|S| + |D|)
source-peer paths are lost.

Hence assume |Y | < |S|. In this case, g iteratively exchanges some d ∈ Y ∩ D
with an x ∈ S \ Y . Let Y ′ be the altered set after such an exchange. We have
∀e ∈ U : |succTe (Y ′)| ≥ |succTe (Y )|, since for every Te ∈ T one of the following cases
holds:

• Se ∩ Y 6= ∅: It holds that succTe (d) ⊂ succTe (Y \ {d}) = succTe (Y ). Therefore, we
obtain succTe (Y ′) = succTe (Y ) ∪ succTe (x).

• Se ∩ Y = ∅: Since we have |succTe (x)| ≥ 1, |succTe (d)| = 1, and x 6∈ succT (Y ), it
follows that |succTe (Y ′)| = |succTe (Y )| − |succTe (d)|+ |succTe (x)| ≥ |succTe (Y )|.

For each exchange, we obtain aT (Y ′) ≥ aT (Y ) and finally aT (g((S,C, t), Y )) ≥ aT (Y ).

Claim 3.2.11
For every Y ⊆ S, it holds that

∣∣⋃
si∈Y si

∣∣ ≥ t⇔ aT (Y ) ≥ t · |D|.
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Proof. “⇒”: Due to the definition of Se, it holds that ∀e ∈
⋃
si∈Y si : Se ∩ Y 6= ∅.

Hence, the attack Y removes a predecessor of the whole set D in at least t trees of T .
We obtain aT (Y ) ≥ t · |D|.

“⇐”: Since Y ⊆ S, in each tree Te ∈ T either all or none of the dummy nodes lose a
predecessor due to attack Y .

We show that if aT (Y ) ≥ t · |D|, then the paths to dummy nodes must be lost in at
least t trees of T . For this, assume the opposite, i.e., that in at least k − t+ 1 trees
both the set D and the predecessor(s) of D can still be reached from the source. Then
we had aT (Y ) ≤ k(|S|+ |D|)− (k− t+ 1)(|D|+ 1) = t|D| − (k− t+ 1) < t|D|, because
k|S| = |U | · |S| = |D|. This contradicts the assumed damage.

Since Y ⊆ S, in a tree Te the packets of dummies are only lost if Se ∩ Y 6= ∅. Thus,
we obtain

∣∣⋃
si∈Y si

∣∣ ≥ t.
Together, the Claims 3.2.10 and 3.2.11 show that g((U,S, t), Y ) is a valid solution

for Min PSC instance (U, S, t), if Y is a valid solution for our LiSS instance (T , t|D|).
Furthermore, all valid solutions for a Min PSC instance (U, S, t) are valid solutions for
LiSS instance (T , t|D|).

Both problems share a common measure of solution value: the cardinality. Hence,
optimum solutions will have an identical value for both problems. For Min PSC
instance (U, S, t) and LiSS solution Y on input f((U, S, t)), Claim 3.2.10 leads to

RMin PSC((U, S, t), g((U, S, t), Y )) ≤ RLiSS(f((U, S, t)), Y ). (3.9)

This confirms that (f, g) is indeed a strict approximation-preserving reduction.

The reduction function f returned topologies with n = (|U |+ 1)|S| and k = |U |. Due
to Corollary 3.2.7, we obtain a c1 log(k)-inapproximability result for the LiSS problem,
for some constant c1 > 0. If NP 6⊂ DTIME(nO(log logn)), then c1 can be set to any
constant value smaller than 1.

Note that the Minimum Set Cover problem maintains its logarithmic inapprox-
imability when it is restricted to instances with |S| ≤ |U |2. This can be shown by a
straight-forward reduction from the Minimum Dominating Set problem. Hence, we
also obtain a c2 log(n)-inapproximability result for some constant 0 < c2 <

1
2 .

As a consequence of Theorem 3.2.9, not only finding the optimal solution for a LiSS
instance is NP-complete. The search problem even maintains its complexity, if we
would be content with solutions that are by a logarithmic factor in the number peers
larger than the optimum.

There is also a strict reduction LiSS ≤strict Min PSC: Given a topology T of k
stripes over node set V and a damage threshold t, the reduction function f returns a
Min PSC instance (U, S, t) with ground set

U := V × [k] (3.10)
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(b) Set system of Min PSC instance (U, S, t).

Figure 3.4.: Set system returned by f in reduction LiSS ≤strict Min PSC.

and the set of sets
S := {sv | v ∈ V } (3.11)

with
sv :=

⋃
i∈[k]

(
succTi (v)× {i}

)
. (3.12)

Figure 3.4 gives an example. Since in each stripe of T there is a bijection between
the peers and their respective successor sets, it holds that ∀u, v ∈ V : u = v ∨ su 6= sv.
Given a Min PSC solution Y ⊆ S, the function g returns the set of nodes corresponding
to the sets in Y :

g((T , t), Y ) :=
{
v ∈ V

∣∣∣ sv ∈ Y } . (3.13)

We notice that Y is a solution of Min PSC instance (U, S, t) if and only if g((T , t), Y )
is a solution for LiSS instance (T , t), i.e., |

⋃
sv∈Y sv| ≥ t⇔ aT (g((T , t), Y )) ≥ t, since∣∣∣∣∣ ⋃

sv∈Y
sv

∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
sv∈Y

⋃
i∈[k]

(
succTi (v)× {i}

)∣∣∣∣∣∣ (3.14)

=

∣∣∣∣∣∣
⋃
i∈[k]

⋃
sv∈Y

(
succTi (v)× {i}

)∣∣∣∣∣∣ (3.15)

=

∣∣∣∣∣∣
⋃
i∈[k]

succTi (g((T , t), Y ))× {i}

∣∣∣∣∣∣ (3.16)

=
∑
i∈[k]

|succTi (g((T , t), Y ))| (3.17)

= aT (g((T , t), Y )). (3.18)

Both problems use cardinality to measure solution value. Since |Y | = |g((T , t), Y )|
holds for each Min PSC solution Y , the values of optimal solutions coincide, too. The
functions f and g are polynomial-time-computable. Consequently, the pair (f, g) is a
strict approximation-preserving reduction.
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Algorithm 1: Greedy algorithm for the LiSS problem

Input: (T , t)
Y := ∅;
while aT (Y ) < t do

Fix x ∈ arg maxx∈V \Y a
T (Y ∪ {x})− aT (Y );

Y := Y ∪ {x};
return Y ;

Thus, approximation algorithms for the Min PSC problem can be used to approxi-
mate LiSS. The most prominent one is the intuitive greedy algorithm, that iteratively
chooses a set covering the most uncovered elements. This algorithm is well-studied and
can guarantee an approximation ratio of min(maxsv∈S |sv|, H(t)) [Wol82, Sla97], where
H(x) :=

∑x
i=1

1
i is the x-th harmonic number. H(n) is upper bounded by ln(x) + 1.

Due to the above reduction, this greedy algorithm is equivalent to Algorithm 1, the
natural greedy algorithm for LiSS.

Corollary 3.2.12
Algorithm 1 is a min(maxv∈V a

T (v),H(t))-approximation algorithm for the LiSS
problem.

Over all possible instances, we have min(maxv∈V a
T (v),H(t)) ≤ H(kn) ≤ ln(kn) + 1.

Furthermore, due to Theorem 3.2.9 and given P 6= NP, the guaranteed approximation
ratio of solutions of Algorithm 1 is by at most a constant factor greater than the
guarantees that any polynomial-time approximation algorithm for LiSS is able to give.

Clearly, it is possible to further improve Algorithm 1. For example, the introduction
of a constant lookahead seems promising. However, such enhanced algorithms are
equivalently limited by the inapproximability result of Theorem 3.2.9.

Together, both reductions show that the approximability of LiSS is very similar to
that of the Minimum Set Cover problem. If P 6= NP, Minimum Set Cover is
complete for the class of logarithmically approximable problems under E-reduction
[KMSV99, AMS06]. Since the latter is a generalization of the strict reduction [Cre97],
the same applies to the LiSS problem.

It is important to note that all results of this chapter are worst-case results. Conse-
quently, for carefully chosen subsets of LiSS instances, better approximation algorithms
will exist. A drastic example is given by the optimally LiSS-stable topologies of
Section 4.1, for which a simple polynomial-time greedy algorithm guarantees to find an
optimal LiSS solution. However, the stability of such topologies is not compromised
this fact, since the same algorithm achieves at least an equal value of damage on all
other topologies with the same parameters.

3.2.4. (In-)Approximability of the LoSS Problem

Now, we turn to the (in-)approximability of the LoSS problem. We will base our
results on the Minimum Dominating Set problem.

43



3. Attacks, Damage Measures, and Attack Problems

3 4

1 2

(a) Graph G

T1

s

1

2 3

4

T2

s

2

1 3 4

T3

s

3

1 2 4

T4

s

4

2 3

1

(b) Topology T

Figure 3.5.: Example for topologies built in the reduction Min DS ≤strict LoSS.

Definition 3.2.13 Minimum Dominating Set (Min DS)
Given a graph G = (V,E), choose a subset X ⊆ V of minimum cardinality, that
satisfies ∀u ∈ V \X,∃v ∈ X : {u, v} ∈ E.

The approximation properties of the Min DS problem are similar to that of the
Minimum Set Cover problem [Kan92]. In particular, it is c log |V |-inapproximable
for a constant c > 0, if P 6= NP.

Theorem 3.2.14
If P 6= NP, the LoSS-problem is c1 log(k)- and c2 log(n)-inapproximable for con-
stants c1, c2 > 0. Here, n is the number of peers and k the number of stripes of the
input topology.

Proof. We show a strict reduction Min DS ≤strict LoSS.
Given a graph G = (V,E), the reduction function f returns a LoSS instance (T , z, t)

with z := 1 and t := |V |. The topology T has k := |V | stripes over node set V . For a
node v ∈ V , define the neighborhood of v in graph G as N(v) := {u ∈ V | {u, v} ∈ E}.
The topology T contains a stripe Tv for each v ∈ V . In stripe Tv, it holds that
childTv (v) = N(v) and HTv = V \ N(v). Figure 3.5 gives an example of such a
construction.

Called on a LoSS solution Y , the function g simply returns Y . Both f and g are
polynomial-time computable.

Claim 3.2.15
A set Y ⊆ V is a Min DS solution on G if and only if Y is a LoSS solution for input
(T , 1, |V |).

Proof. Let Y ⊆ V be a LoSS solution for (T , 1, |V |), i.e., Y contains at least one
predecessor in T for every node in V . Since in T a node u ∈ V forwards only in stripe
Tu, it holds that ∀v ∈ V ∃u ∈ Y : v ∈ Y ∨ v ∈ succTu (u). By construction of T , this is
the case if and only if ∀v ∈ V ∃u ∈ Y : v ∈ Y ∨ v ∈ N(u). Thus, Y is a dominating set
of G.
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From Claim 3.2.15 and the fact that Min DS and LoSS both use cardinality to
measure the value of a solution, it follows that (f, g) is indeed a strictly approximation-
preserving reduction. Since the built topologies have k = |V | and n = |V |, Theorem
3.2.14 follows from the inapproximability of Min DS.

In contrast to the LiSS problem, we currently do not know whether this approxima-
bility bound is tight.

However, as a first step towards a LoSS approximation, we can identify certain sets
of LoSS instances for which approximation algorithms are known.

• A trivial case appears as soon as we restrict the number of topology heads to
a constant c ∈ N. In this case, optimal solutions are of cardinality at most c
(since HT is a solution achieving every possible damage threshold), such that the
number of solution candidates is polynomial:

∑c
i=1

(
n
i

)
≤
∑c
i=1 n

i. Thus, this
subproblem is in P.

• If we alternatively restrict to LoSS instances (T , z, t) with z = 1, an attacked
node directly damages all its undamaged successors. This subproblem of LoSS
can be seen as a Min PSC instance with U := V , S := {

⋃
i∈[k] succTi (v) | v ∈ V },

and an unchanged threshold t. Therefore, it is min(maxv∈V bT ({v}, 1),H(t))-
approximable [Wol82, Sla97].

• If we restrict to topologies of maximum depth 2, the LoSS problem can be
interpreted as a Partial Multi-Set Multi-Cover problem: the problem of
covering t elements of U , each at least z times, and allowing S to be a set of mul-
tisets over U . In particular, we had U = V and S = {

⊎
i∈[k] succTi (v) | v ∈ V }.

Additionally, a reverse reduction to LoSS seems possible, too. However, ap-
proximability results are currently only known for the restriction Partial Set
Multi-Cover, for which a 4d

3 + ε-approximation [RS11] (with d := maxsi∈S |si|
and ε > 0) was recently found. If d(T ) = 2 and t = n, we can apply an LP-
based approximation algorithm [Kol00, Vaz04] for Multi-Set Multi-Cover
and achieve an approximation ratio of H(maxv∈V a

T (v)) on these instances.

• Restricting to LoSS instances (T , z, t) with arbitrary topologies and t = n, we
can apply an algorithm running z rounds of the greedy algorithm for Minimum
Set Cover.

Starting with a solution Y = ∅, in each round the algorithm approximates a set
cover instance (U, S) with U := {v ∈ V | incTY (v) > k−z} and S = {sv | v ∈ V \Y }.
Here, each sv contains all nodes u ∈ U that have an intact s→ u path leading
over v after the nodes Y are removed from T .

After each round, the set cover solution is added to Y and after z rounds, Y is
returned. It is a valid LoSS solution since each v ∈ V has predecessors from at
least z stripes in Y . Furthermore, let X be an optimal LoSS solution for (T , z, t)
and let Si be an optimal set cover solution in round i. We have

∑
i∈[z] |Si| ≤ z|X|,

45



3. Attacks, Damage Measures, and Attack Problems

since in each round X \ Y is a valid set cover solution, too. Consequently, this
algorithm results in a zH(n)-approximation:

|Y | ≤ H(n)
∑
i∈[z]

|Si| ≤ zH(n)|X| (3.19)

• If the LoSS problem is modified, such that a specific subset Z ⊆ V has to be
damaged, we can reuse the z-round set cover algorithm described above. In
particular, we add the additional restriction that the unimportant nodes V \ Z
are removed both from U and all sets in S. Due to the arguments given above,
this results in a zH( |Z| )-approximation.

Albeit no non-trivial approximation algorithm is currently known for the general
LoSS problem, it has notable similarities with the family of classical covering problems
around Minimum Set Cover. Given P 6= NP, the latter is the canonical problem for
the class of logarithmically approximable NPO problems [Hoc97, ACK+00]. Therefore,
it seems possible that a logarithmic approximation algorithm for the general LoSS
problem exists. A promising source for a confirmation or rejection of such a conjecture
are future results on the most similar Set Cover variant, the Partial Multi-Set
Multi-Cover problem. However, to date, non-trivial approximability results exist
only for the less general Partial Set Multi-Cover [RS11].

Again, it has to be noted that the (in-)approximability results of this section are
worst-case results over all possible instances of the LoSS problem. Consequently, the
approximability can be better in both the average-case and for specifically chosen
instances. A respective indication is given by experimental results [Gum11], comparing
the solution value of simple greedy algorithms and exact exponential-time algorithms
for the LoSS problem on samples of different classes of distribution topologies. Until
the damage threshold was reached, the greedy algorithms iteratively attacked a node
being predecessor to the highest number of undamaged nodes in the topology. Although,
they performed remarkably bad on most classes, they were close to optimal solutions
for topologies consisting of unbalanced trees. In this case, the structure of optimal
solutions is clearly favoured by the greedy algorithm’s node selection strategy.

3.2.5. Inapproximability of the FEC-LoSS Problem

Finally, we analyze the inapproximability of the FEC-LoSS problem. Here we are able
to show considerably higher inapproximability bounds than for the LoSS problem that
uses Multiple Description Coding.

The results of this section relate FEC-LoSS with a class of NPO problems for
which the canonical problem is Label Cover [Hoc97]. This class is believed to be
seperate from the logarithmically approximable problems for which Set Cover is
complete if P 6= NP. Label Cover has received attention due to its connections
to proof theory [DS04]. Here, however, we use the Red-Blue Set Cover problem,
which features equal inapproximability results and a much simpler formulation.
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Definition 3.2.16 Red-Blue Set Cover (RBSC) [CDKM00]
Given two disjoint ground sets R and B of red resp. blue elements and a set S of
sets si ⊆ R ∪B with R ∪B =

⋃
si∈S si, find a subset Y ⊆ S with B ⊆

⋃
si∈Y si that

minimizes
∣∣⋃

si∈Y si ∩R
∣∣ .

If P 6= NP, RBSC cannot be approximated with ratio 2log1−δ |S|, where δ = 1/ log logc |S|
for any constant c < 1

2 [CDKM00]. This result places it beyond the classes of loga-
rithmically (e.g., Set Cover) and polylogarithmically (e.g., Group Steiner Tree)
approximable problems. Furthermore, the same inapproximability holds for the variant
2-1-RBSC where S contains only sets of one blue and two red elements [CDKM00].

Theorem 3.2.17
If P 6= NP, then the FEC-LoSS problem is inapproximable within factors of

2log1−o(1) Θ(k) and 2log1−o(1) Θ(
√
n), respectively.

Proof. We show a strict reduction 2-1-RBSC ≤strict FEC-LoSS.
Called on a 2-1-RBSC instance (R,B, S) the reduction function f constructs a

topology T of k := 2|S| stripes. The node set V := R ∪ {si,1, si,2 | si ∈ S} ∪ VB
contains the red nodes R, two set nodes si,1, si,2 per si ∈ S, and a set of blue replica
nodes VB := {v ∈ Vb,j | j ∈ {1, 2}, b ∈ B}. For each b ∈ B, the latter is organized,
into two replica blocks Vb,j := {bqj | 1 ≤ q ≤ |R|+ 2|S|}. Consequently, it holds that
n = (2|B|+ 1)(|R|+ 2|S|).

For each set si = {r1, r2, b} ∈ S, there are two unique stripes Tr1,si and Tr2,si .

In particular, for q, j ∈ {1, 2}, in Trq,si it holds that childTrq,si(rq) = {si,1, si,2} and

childTrq,si(si,j) = Vb,j . All other nodes are children of source s. Figure 3.6 gives an
example of such a set-specific tree pair. After T is constructed, f returns FEC-LoSS
input (T , z, t) with z := 2 and t := 2|B|(|R|+ 2|S|).

Called on 2-1-RBSC instance (R,B, S) and FEC-LoSS solution Y ⊆ V , the function
g returns S if |Y | ≥ |R|. Otherwise, g first removes all those set nodes from Y whose
blue element can be covered by a set containing only red nodes from Y :

Y := Y \ {si,j ∈ Y | b ∈ si ∩B ∧ r1, r2 ∈ Y ∩R ∧ {r1, r2, b} ∈ S} (3.20)

Then, for each b ∈ B, the set SY,b := {si ∈ S | b ∈ si ∧ {si,1, si,2} ∩ Y 6= ∅} is formed. It
holds that ∀b1, b2 ∈ B : b1 6= b2 ⇒ SY,b1 ∩SY,b2 = ∅, since each set in S contains exactly
one blue node. For every non-empty set SY,b, both red nodes of one representative set
si ∈ SY,b are added to Y and all set nodes corresponding to sets in SY,b are dropped
from Y . Finally, g returns the set Z := {{r1, r2, b} ∈ S | r1, r2 ∈ Y ∩R}.

Both f and g are polynomial-time computable.

Claim 3.2.18
If Y ⊆ V is an FEC-LoSS solution on instance f((R,B, S)), then
Z := g((R,B, S), Y ) is a 2-1-RBSC solution on (R,B, S) with

∣∣⋃
si∈Z si ∩R

∣∣ ≤ |Y |.
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b11 · · ·

· · ·

bq1 b12 · · ·

· · ·

bq2

remaining nodes

Figure 3.6.: Trees Tr1,si and Tr2,si for a set si = {r1, r2, b} ∈ S where q = |R|+ 2|S|.

Proof. If |Y | ≥ |R|, the function g returns S, covering both R and B completely. So
from now on assume |Y | < |R|.

At first note that, since they are heads in each stripe of T , red nodes can only be
damaged by being included in the attack Y . Furthermore, all nodes of a blue replica
block Vb,j have the same predecessors. Hence, without being directly attacked, blue
replica nodes can only be damaged in whole blocks Vb,j of |R|+ 2|S| nodes.

We show that attacking Y \ VB must damage all blue replica nodes: Assume there is
a block Vb,j left undamaged by an attack on Y \ VB . It holds that

t = 2|B|(|R|+ 2|S|) ≤ becT (Y, 2) (3.21)

≤ |V | − |Vb,j |+ |Vb,j ∩ Y | − |R \ Y | (3.22)

= 2|B|(|R|+ 2|S|) + |Vb,j ∩ Y | − |R \ Y |, (3.23)

leading to

|R \ Y | ≤ |Vb,j ∩ Y | (3.24)

⇒ |R| = |R ∩ Y |+ |R \ Y | ≤ |R ∩ Y |+ |Vb,j ∩ Y | ≤ |Y |. (3.25)

Inequality (3.25) holds because R ∩ Vb,j = ∅. It contradicts the assumption |Y | < |R|.

For an arbitrary b ∈ B, we study which conditions on Y ensure that all nodes
Vb,1 ∪ Vb,2 are damaged by Y \ VB. This happens if they lose at least z = 2 stripes.
The following cases are possible:

• ∃r1, r2 ∈ Y : si = {r1, r2, b} ∈ S: In both Tr1,si and Tr2,si the parents of the
set nodes si,1 and si,2 are disabled. Hence, both set nodes are damaged. In
particular, they cannot supply their children Vb,1 ∪ Vb,2 in these stripes. Those
are damaged, too.
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• ∃si,1, sj,2 ∈ Y : b ∈ si ∧ b ∈ sj : Let r1, r2 be the red nodes in set si. Disabling
si,1, the nodes Vb,1 lose their parents in the stripe Tr1,si and Tr2,si . Hence, they
are damaged. The argument for sj,2 and Vb,2 is analogue.

We denote these cases as the red-nodes case and the set-nodes case, respectively. We also
show, that there are no further ways to damage all nodes Vb,1∪Vb,2 by attacking Y \VB .
Assuming that none of the above conditions applies, for each set si = {r1, r2, bs} ∈ S,
distinguish the following cases:

• bs 6= b: The nodes Vb,1 ∪ Vb,2 are heads in the stripes Tr1,si and Tr2,si . They
cannot lose these stripes due to attack Y \ VB .

• bs = b ∧ |{r1, r2} ∩ Y | ≤ 1: The nodes si,1 and si,2 are heads in all stripes but
Tr1,si and Tr2,si . Assuming that none of them is attacked, both have at least
k− 1 intact parents and can forward to Vb,1 ∪ Vb,2 in both stripe Tr1,si and Tr2,si .
However, if si,1 or si,2 are attacked, either the nodes Vb,1 or Vb,2 are damaged.

Since the set-nodes case was excluded, damage due to attacked set nodes can happen
only for either Vb,1 or Vb,2. Hence, at least the other blue replica block is supplied in
all stripes. This contradicts that all nodes of Vb,1 ∪ Vb,2 were damaged.

Consequently, we now know that attack Y \ VB damages all nodes VB and that, for
each blue replica block, this is achieved by either the red-nodes case or the set-nodes
case.

Now, trace the computation of g. The initial removal of set nodes cannot increase
the cardinality of Y . Note that, for each removed set node si,j with blue element b ∈ si,
Y \ VB damages the blue replica nodes Vb,1 ∪ Vb,2 due to the red-nodes case. In the
second step, the sets SY,b are formed. Since all other set nodes were already removed,
these sets are non-empty only for blue elements whose blue replica nodes are damaged
only by the set-nodes case. For each b with |SY,b| ≥ 1, g adds both red nodes of one set
in SY,b to Y and removes at least the 2 set nodes from the set-nodes condition. Thus,
Y cannot grow and after this transformation each blue replica node is damaged due to
red nodes in Y . Hence, Y ∩R is a valid solution for our LoSS instance.

Finally, based on the modified Y , g returns Z = {{r1, r2, b} ∈ S | r1, r2 ∈ Y ∩ R}.
It holds that

∣∣⋃
si∈Z si ∩R

∣∣ ≤ |Y ∩R| ≤ |Y |. Since Y ∩ R is a valid LoSS-solution
damaging Vb,1 ∪ Vb,2 for all b ∈ B, we have ∀b ∈ B ∃r1, r2 ∈ Y ∩ R : {r1, r2, b} ∈ S.
Hence, the set Z is a red-blue set cover for (R,B, S).

Claim 3.2.18 shows that g returns valid 2-1-RBSC solutions for input (R,B, S) and
cannot increase solution cardinality.

A similar transformation produces FEC-LoSS solutions from 2-1-RBSC solutions:
Given a 2-1-RBSC solution X for instance (R,B, S), an attack Y =

⋃
si∈X si ∩R on T

disconnects all nodes VB . In particular, for all b ∈ B, the nodes Vb,1 ∪Vb,2 are damaged

due to the red-nodes case. Therefore, it holds that becT (Y, 2) ≥ 2|B|(|R|+ 2|S|) and
Y is a valid FEC-LoSS solution for input f((R,B, S)). Furthermore, X and Y have
equal solution quality.
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It follows that optimal solutions for every 2-1-RBSC instance (R,B, S) and the
corresponding FEC-LoSS instance f((R,B, S)) have a common value opt. For every
FEC-LoSS solution Y on input f((R,B, S)), we obtain

R2-1-RBSC((R,B, S), g((R,B, S), Y )) =

∣∣∣⋃si∈g((R,B,S),Y ) si ∩R
∣∣∣

opt
(3.26)

≤ |Y |
opt

= RFEC-LoSS(f(R,B, S), Y ). (3.27)

Consequently, (f, g) is a strict approximation-preserving reduction. The built topology
T has the properties k = 2|S| and n = (2|B|+ 1)(|R|+ 2|S|) = Θ(|S|2). Combining
these with the inapproximability of 2-1-RBSC, we obtain the stated inapproximability
bounds for FEC-LoSS.

Similar to the LoSS problem, it is an open question whether this bound is tight. In
particular, no non-trivial approximation algorithm for FEC-LoSS is currently known.

3.3. Summary

In this chapter, we began studying the influence of distribution topologies on the attack-
stability of push-based peer-to-peer live streaming systems. In particular, Section 3.1
introduced and motivated our model of attacks and their consequences for the streaming
system. For this, the measures of LiSS-, LoSS-, and FEC-LoSS-damage were defined.
In presence of an attack, they count the system-wide number of lost packets and the
number of nodes that lost at least a given fraction of stripes when MDC or FEC stream
encoding is applied. In Section 3.2, we used these damage measures to formalize the
corresponding attacker problems LiSS, LoSS, and FEC-LoSS. In each, the task is to
create an aspired amount of damage by attacking a minimum number of peers. We
showed that the search versions of all three problems are NP-complete and studied
their approximability.

Under the assumption that P 6= NP, the results showed c1 log(k)- and c2 log(n)-in-
approximability (with constants c1, c2 > 0) for both the LiSS and the LoSS problem.

Furthermore, we proved the 2log1−o(1) Θ(k) resp. 2log1−o(1) Θ(
√
n)−inapproximability of

the FEC-LoSS problem. Hence, there are topologies on which a deterministic attacker
with only polynomial computational resources has to attack a number of peers that is
at least by these factors larger than the actual minimum required. To the knowledge of
the author, these are the first lower bounds on the guaranteed quality of attacks of
polynomial-time attackers on peer-to-peer distribution topologies. The results were
published in [GFBS11].

Besides these inapproximability results, we also observed that the natural greedy
algorithm for the LiSS problem gives a min(maxv∈V a

T (v), H(t))-approximation. Thus,
the approximation ratio of its solutions is by at most a constant factor greater than
the guarantees that any polynomial-time approximation algorithm for LiSS is able to
give, if P 6= NP.
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Albeit we could identify a number of special cases in which the LoSS problem is
logarithmically approximable, its general approximability remained unclear. Due to
its similarities with the Partial Multi-Set Multi-Cover problem, it is to expect
that future results on this very general variant of Set Cover can be transfered to the
LoSS problem.

A similar open question was posed by the approximability of the FEC-LoSS problem.
Studying the presented reductions, we generally saw that the number of topology

stripes directly influences the inapproximability of our attacker problems. Although
we have to be careful not to over-simplify the consequences of this observation, it can
be said that a high number of stripes offers the possibility to construct topologies for
which resource-efficient attacks are hard to find.

Finally, it is important to emphasize that all results of Section 3.2 are based on
worst-case analysis. Hence, there will be subclasses of topologies which are much easier
to attack. Here, the optimally LiSS-stable topologies of Chapter 4 are a prominent
example, where the LiSS problem can be solved in P. Studying the hardness of attacks
on other restricted classes of topologies offers interesting topics for future research.

The two following chapters will now take an opposite approach on attack-stability.
Instead of asking for the hardness of finding efficient attacks, we aim at constructing
topologies that minimize the maximum damage that attacks of any given set of attack
parameters (e.g., cardinality, service loss threshold) can achieve on them. In particular,
Chapter 4 will consider the LiSS-damage measure, while Chapter 5 will study the
LoSS-damage measure.
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4. LiSS-Stability and Topology
Construction Rules

After the study of attack problems in Section 3.2, we now want to approach the concept
of attack-stability from a very defensive point-of-view. This is motivated by the fact
that, although they may be difficult to plan, we have to acknowledge that attacks on
peer-to-peer streaming systems can generally not be averted.

However, the peer-to-peer streaming system can be prepared. Especially, the available
control over the own distribution topology can be used to form attack-stable topologies.
In this process, the following questions are posed:

• Given the current system parameters (e.g., stripe number, source capacity, peer
number), are there topologies that minimize the maximum possible damage that
is achievable on them for every set of attack parameters?

• If these topologies exist, what are their properties and how are they built?

In the current and the following chapter, we will study these questions when measuring
the consequences of attacks in LiSS- and LoSS-damage, respectively. This determina-
tion will turn out to heavily influence the requirements for such stable topologies as
well as the practicability of constructing them.

We now focus on topologies minimizing possible LiSS-damage. Section 4.1 char-
acterizes optimally LiSS-stable topologies, presents a first subclass whose topologies
are easy to construct, and analyzes properties necessary due to their characterization.
Based on these findings, a more general subclass is presented in Section 4.2. It is
defined by a small set of rules. The following Section 4.3 focusses on studying an
important special case, the optimally LiSS-stable head topologies. Section 4.4 shows
that recognizing a given topology as optimally LiSS-stable is a coNP-complete problem
and Section 4.5 sketches possible heuristics to construct the identified classes using a
distributed topology management. The chapter is summarized in Section 4.6.

4.1. Optimally LiSS-Stable Topologies

In the following, we give a first introduction to optimally LiSS-stable topologies. In
particular, Subsection 4.1.1 presents and motivates their definition. Furthermore, the
problems of finding and recognizing optimally LiSS-stable topologies are formalized.

Next, Subsection 4.1.2 studies a greedy attack strategy on distribution topologies.
The damage achieved by such attacks is lower bounded by sums over a specific damage
sequence. By introducing a topology class where maximum possible LiSS-damage has
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exactly this upper bound, Subsection 4.1.3 gives both a damage-based characterization of
optimally LiSS-stable topologies and a first subclass. In particular, testing membership
for this subclass is possible in polynomial-time. Based on the obtained characterization,
Subsection 4.1.4 then deduces properties necessary for optimally LiSS-stable topologies.

4.1.1. The Problem of Finding Optimally LiSS-Stable Topologies

In our study, we again follow a worst-case approach and minimize only maximum
possible damage. The alternative would be to optimize topologies such that they
minimize the consequences of individual attack strategies. However, here a multitude
of strategies is thinkable and a topology that is optimal towards one strategy can
be quite vulnerable towards another one. We approach possible objections in two
ways. On the one hand, by minimizing the damage dealt by an optimal attacker (with
exponential-time computing resources), we clearly upper-limit the damage of all attack
strategies. On the other hand, Section 4.1.2 shows that the LiSS-damage of an optimal
attacker on an optimally LiSS-stable topology in T(n,C, k) can be caused on every
topology from T(n,C, k) by a simple greedy attacker. Hence, we can limit the maximum
damage on the topology to a level which cannot be prevented and is furthermore easily
obtained on every topology. These arguments formed an integral part in the publication
[BBG+09].

Based on the goals given above, we now formalize our demands on optimally LiSS-
stable topologies.

Definition 4.1.1 Optimally LiSS-stable Topology
Given n,C, k ∈ N with n ≥ Ck, a topology T ∈ T(n,C, k) is called at least as
LiSS-stable as C ∈ T(n,C, k), if it holds that

∀x ∈ [n] : max
X⊆V,|X|=x

aT (X) ≤ max
X⊆V,|X|=x

aC(X).

T is called an optimally LiSS-stable topology, if it is at least as LiSS-stable as every
C ∈ T(n,C, k).

With this definition, we can formalize our problem of obtaining optimally LiSS-stable
topologies.

Definition 4.1.2 Optimally LiSS-stable Topology Formation Problem
Given n,C, k ∈ N with n ≥ Ck, find an optimally LiSS-stable topology T ∈ T(n,C, k)
or determine that none exists.

Since the size of the binary representation of topology T (e.g., an n × k matrix of
predecessors) must be polynomial in the parameters n,C, k and since we will see in
Section 4.1.3 that optimally LiSS-stable topologies actually exist in each class T(n,C, k),
computing a solution for this problem will have at least pseudopolynomial runtime.

If we are not only interested in the existence of any optimally LiSS-stable topology
in T(n,C, k) but want to decide whether a given topology has this property, we obtain
the following problem.
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Definition 4.1.3 LiSS-Stability Decision Problem
Given a topology T ∈ T(n,C, k), decide whether T is optimally LiSS-stable in
T(n,C, k) or not.

Although the Sections 4.1.2-4.3 will identify a number of very important and applicable
cases where the LiSS-Stability Decision Problem can be solved in polynomial time,
we will prove in Section 4.4 that it is actually coNP-complete. Thus, if P 6= NP, we
cannot expect it to be generally solved by polynomial-time algorithms.

4.1.2. A Successful Attack Strategy

In Section 3.2 we have seen that, using the LiSS-damage measure, the planning of
resource-efficient attacks on distribution topologies is NP-complete in its search version.
The same applies to the corresponding maximization problem where the input consists
of a topology T ∈ T(n,C, k) and attack size x ∈ [n]. The task is to find an attack X
on T with |X| = x that maximizes aT (X). Here, NP-hardness follows from the fact
that if a polynomial-time algorithm A for this problem would exist, we could solve the
LiSS problem in polynomial time using binary search and log n calls to A.

Nonetheless, it is possible to identify a simple polynomial-time greedy algorithm
achieving a LiSS-damage lower bounded by sums over a specific damage sequence.
This sequence depends on the parameters of T and the attack size x. As we will see in
Section 4.1.3, the lower bound is sharp: it coincides with the maximum damage of an
x-node attack on optimally LiSS-stable topologies.

The greedy algorithm first appeared in [BSS09] and is given by Algorithm 2.

Algorithm 2: A successful attack strategy concering LiSS-damage

Input: Topology T ∈ T(n,C, k), attack size limit x ∈ [0, n]

if x ≥ |HT | then return HT ;
(HTi1 , . . . ,H

T
ik

) := sort (HT1 , . . . ,H
T
k ) in order of non-decreasing cardinality;

X := ∅; j := 1;
while |X ∪HTij | ≤ x do X := X ∪HTij ; j := j + 1;

while |X| < x do Fix h ∈ arg maxv∈HTij \X
aT (X ∪ {v}); X := X ∪ {h};

return X;

For each but at most one stripe of topology T , the returned attack contains either
all heads or none. In particular, the heads of stripes with few heads are attacked
with preference. If there is a stripe for which only a subset of heads is attacked, these
are chosen greedily one after another. Each chosen head maximizes the increase of
LiSS-damage of the resulting attack set. Attacks returned by Algorithm 2 contain
min(x, |HT |) nodes.

To lower-bound the damage of such an attack, we introduce the following sequence.
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Definition 4.1.4 Damage Sequence δC,ki

For fixed values of n,C, k ∈ N and with i ∈ [Ck], l := b(i− 1)/Cc, and
h := (i− 1 mod C) define the damage sequence

δC,ki :=

{⌈
n
C

⌉
+ (k − 2l − 1) , if h < n mod C⌊

n
C

⌋
+ (k − 2l − 1) , if h ≥ n mod C.

For growing values of i, the damage sequence (δC,ki )1≤i≤Ck is monotonic decreasing.
Figure 4.1 shows the plot of an example sequence.

For q ∈ [k], it holds that

Cq∑
i=1

δC,ki = q
(
C
⌊ n
C

⌋
+ (n mod C)

)
+ Cq(k − 1)− 2

Cq∑
i=1

⌊
i− 1

C

⌋
(4.1)

= qn+ Cq(k − 1)− 2C

q−1∑
i=1

i (4.2)

= qn+ Cq(k − 1)− 2C
q(q − 1)

2
(4.3)

= qn+ Cq(k − q). (4.4)

Furthermore, for n ≥ Ck and i ∈ [Ck], we have

δC,ki ≥
⌊ n
C

⌋
+ (k − 2l − 1) = (k − l) +

⌊ n
C

⌋
− l − 1

≥ (k − l) + (k − (k − 1)− 1) = (k − l).
(4.5)

Lemma 4.1.5 [BSS09]
For each T ∈ T(n,C, k) and x ∈ [0, n], an attack X returned by Algorithm 2 has the
property that

aT (X) ≥
min(x,Ck)∑

i=1

δC,ki . (4.6)

Proof. The proof follows the ideas presented in [BSS09].

If x ≥ |HT |, Algorithm 2 returns X = HT . Attacking X disturbs all source-peer

paths, i.e., it holds that aT (X) = kn. We obtain aT (X) =
∑Ck
i=1 δ

C,k
i ≥

∑min(x,Ck)
i=1 δC,ki ,

due to Equation (4.4).

From now on assume x < |HT |. Then there is q ∈ [0, k−1], such that |
⋃q
j=1H

T
ij
| ≤ x

and |
⋃q+1
j=1 H

T
ij
| > x. We define HX :=

⋃q
j=1H

T
ij

and H+
X = HX ∪HTiq+1

. Algorithm 2

returns an X ⊆ HT with HX ⊆ X and |X| = x. Since X contains all heads of q stripes
and since each of these also loses its path from the source in the remaining stripes, we
obtain aT (X) ≥ qn+ (k − q)|X|.
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Assuming that x ∈ {|HX |, Cq}, it holds that

aT (X) ≥ qn+ (k − q)x (4.7)

≥
Cq∑
i=1

δC,ki − (Cq − x)(k − q) (4.8)

≥
Cq∑
i=1

δC,ki −
Cq∑

i=x+1

δC,ki =

x∑
i=1

δC,ki . (4.9)

The step from Term (4.7) to (4.8) uses Equation (4.4). The step from Term (4.8) to (4.9)

is based on Inequality (4.5), showing that δC,k1 , . . . , δC,kCq > (k− q). Furthermore, we use

that x = |X| ≤
∑q
j=1 |HTij | ≤ Cq is true. For x = |HX |, it holds due to Lemma A.0.3,

since the stripe head sets are added to X in order of non-decreasing cardinality and
since, for every T ∈ T(n,C, k), we have

∑
i∈[k] |HTi | ≤ Ck.

We see that Inequality (4.6) holds for all values of q ∈ [0, k], i.e., for choices of

x ∈ {0, C, 2C, . . . , Ck} or x ∈ {|
⋃1
j=1H

T
ij
|, . . . , |

⋃k
j=1H

T
ij
|}. Furthermore, for each

0 ≤ x < |HT |, there are numbers a, b with

a = max(|HX |,
⌊ x
C

⌋
C) ≤ x < min(|H+

X |,
⌈ x
C

⌉
C) = b. (4.10)

Note that the damage subsequence (δC,ka+1, . . . , δ
C,k
b ) is non-increasing and satisfies

∀i ∈ [a+ 1, b] : δC,ki ∈
{⌊ n

C

⌋
+ k + 2

⌊
x− 1

C

⌋
− 1,

⌈ n
C

⌉
+ k + 2

⌊
x− 1

C

⌋
− 1

}
.

Let ha+1, . . . , hx be the last (x− a) nodes in the greedy ordering of H+
X \HX that

Algorithm 2 adds to X in its next-to-last line. Note that Xa := X \ {ha+1, . . . , hx}
would be the output of Algorithm 2 when run with parameter x = a. Furthermore,
let hx+1, . . . , hb be the (b− x) next nodes in the continuation of this greedy ordering
over the remaining, unchosen nodes of H+

X \X. Defining Xi := Xa ∪ {ha+1, . . . , hi}
for a+ 1 ≤ i ≤ b, we also see that Xi would be the output of Algorithm 2 when run
with parameter x = i. Additionally, due to our observations above, we know that both

aT (Xa) ≥
∑|Xa|
i=1 δC,ki and aT (Xb) ≥

∑|Xb|
i=1 δ

C,k
i hold.

For i ∈ [a + 1, b], define ∆i := aT (Xi) − aT (Xi−1). Clearly, for i ∈ [a, b], we

have aT (Xi) = aT (Xa) +
∑i
j=a+1 ∆j and especially aT (Xa) +

∑b
j=a+1 ∆i = aT (Xb).

Due to the greedy ordering, the sequence (∆a+1, . . . ,∆b) is non-increasing. Applying

Lemma A.0.1 for the sequences (∆a+1, . . . ,∆b) and (δC,ka+1, . . . , δ
C,k
b ), we obtain

aT (X) = aT (Xx) = aT (Xa) +

x∑
j=a+1

∆j ≥
a∑
j=1

δC,kj +

x∑
j=a+1

δC,kj =

x∑
j=1

δC,kj . (4.11)
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Figure 4.1.: Plot of damage sequence (δC,ki )1≤i≤12 for C = 4, k = 3 and n = 35.

As we will see in the following subsection, the damage guarantees that Lemma 4.1.5
gives for Algorithm 2 are exactly the values of damage that cannot be averted for
attacks of x nodes on topologies from T(n,C, k). Especially, they coincide with the
maximum possible damage that is achievable on the optimally LiSS-stable topologies
in T(n,C, k).

4.1.3. Characterization of Optimally LiSS-Stable Topologies

Next, we study a certain subclass of the topologies T(n,C, k). It first appeared in
[BSS09] (in a disguised form).

Definition 4.1.6 Cluster Topologies
A topology T ∈ T(n,C, k) is called Cluster Topology, if it can be constructed by the
following steps:

1. Partition V into sets V1, . . . , VC with ∀i ∈ [C] : |Vi| ∈ {dn/Ce, bn/Cc}.

2. Form topology T such that for each stripe tree Ti ∈ T , it holds that

a) ∀j ∈ [C] ∀v ∈ Vj : predTi (v) ⊆ {s} ∪ Vj and

b) ∀v ∈ V ∀j ∈ [k] \ {i} : |succT→i (v)| > 0⇒ |succT→j (v)| = 0.

The node set V of a Cluster Topology is split into C subsets (or clusters) of nearly
equal cardinality. All connections between nodes of different subsets are prohibited.
Additionally, for every node v ∈ V , there is at most one stripe in which v is head or
has children. Figure 4.2 gives an impression of a Cluster Topology.

Cluster Topologies have a number of interesting properties. Since the clusters Vj are
pairwise disjoint and since connections between different clusters are forbidden, the sets
HT ∩ Vj for j ∈ [C] are a partition of HT . The nodes of each Vj are reachable from
the source in all k trees, enforcing that each cluster contains a head from each stripe:

∀i ∈ [k] ∀j ∈ [C] : |Vj ∩HTi | ≥ 1. (4.12)

58



4.1. Optimally LiSS-Stable Topologies

s

1

2

4 5 6 7

3

8

9 10

11 12 13

s

3

5

1 2 6 7

4

9

8 11

10 12 13

s

4

6

1 2 5 7

3

13

10 12

11 8 9

T1 T2 T3

Figure 4.2.: A Cluster Topology from T(13, 2, 3) with clusters V1 = [7], V2 = [8, 13].

Topology T ∈ T(n,C, k) has |HT | ≤ Ck. Since no node can be head in more than one
stripe, we obtain

|HT | = Ck and ∀i ∈ [k] : |HTi | = C. (4.13)

For each cluster Vj , the induced stripe subtrees Ti[{s} ∪ Vj ] with i ∈ [k] form a set of k
rooted trees with pairwise disjoint sets of forwarding nodes.

Note that all classes T(n,C, k) have n ≥ Ck. Hence, we can always form cluster
partitions with ∀j ∈ [C] : |Vj | ≥ k. It is then possible to construct topologies having
a unique forwarding peer in each induced stripe subtree Ti[{s} ∪ Vj ]. Consequently,
Cluster Topologies exist in every class T(n,C, k).

Now, we study attacks on Cluster Topologies.

Lemma 4.1.7
For every attack X ⊆ V on a Cluster Topology T ∈ T(n,C, k), there is an attack
Y ⊆ HT with |Y | ≤ |X| and aT (Y ) ≥ aT (X).

Proof. For each j ∈ [C], choose Yj ⊆ HT ∩Vj with |Yj | = min(k, |X ∩Vj |) such that we
have ∀v ∈ X ∩ Vj ∀i ∈ [k] : |succT→i (v)| > 0⇒ HTi ∩ Vj ⊆ Yj . Hence, Yj contains at
least the heads supplying the set Vj in stripes in which a node of X∩Vj is forwarding in.
Since |HT ∩ Vj | = k and since each node forwards in at most one stripe, the cardinality
limit for Yj can always be satisfied. Then form Y as Y :=

⋃
j∈[C] Yj . The sets X ∩ Vj

for all j ∈ [C] are a partition of X. Therefore, it holds that |Y | ≤
∑
j∈[k] |X ∩Vj | = |X|.

Since there are no successor relationships between nodes of different clusters, we can
write for every attack Z ⊆ V :

aT (Z) =
∑
i∈[k]

|succTi (Z)| =
∑
j∈[C]

∑
i∈[k]

|succTi (Z ∩ Vj)| (4.14)

Attacking Y , one of the following cases applies for all i ∈ [k] and all j ∈ [C]:

1. HTi ∩ Vj ⊆ Y : Attack Y contains the (single) predecessor of all nodes Vj in Ti.
This leads to |succTi (Y ∩Vj)| = |Vj |, which is the maximum possible value of LiSS-
damage to the nodes Vj in stripe i. Hence, |succTi (Y ∩ Vj)| ≥ |succTi (X ∩ Vj)|.

59



4. LiSS-Stability and Topology Construction Rules

2. HTi ∩ Vj 6⊆ Y : In this case, we must have |X ∩ Vj | ≤ (k − 1) (otherwise
HT ∩ Vj ⊆ Y ) and thus |Yj | = |Y ∩Vj | = |X ∩Vj |. Since HTi ∩Vj 6⊆ Yj and since
every node forwards in at most one stripe, no node of X ∩ Vj or Y ∩ Vj forwards
in stripe i. Thus, |succTi (Y ∩ Vj)| = |(Y ∩ Vj)| = |X ∩ Vj | = |succTi (X ∩ Vj)|.

We obtain

aT (Y ) =
∑
j∈[C]

∑
i∈[k]

|succTi (Y ∩ Vj)| ≥
∑
j∈[C]

∑
i∈[k]

|succTi (X ∩ Vj)| = aT (X). (4.15)

Next, we give an upper bound on the LiSS-damage created by attacks on Cluster
Topologies.

Lemma 4.1.8 [BSS09]
For every attack X ⊆ V on a Cluster Topology T ∈ T(n,C, k), it holds that

aT (X) ≤
min(|X|,Ck)∑

i=1

δC,ki .

Proof. Due to Lemma 4.1.7, we can restrict the analyis to attacks X ⊆ HT . Then, it
holds that |X| ≤ |HT | ≤ Ck.

W.l.o.g. assume that (V1, . . . , VC) are in order of non-increasing cardinality.

Since Equation (4.14) still applies, we inspect aT (X ∩ Vj) for each j ∈ [C].

For xj := |X ∩ Vj |, we have aT (X ∩ Vj) = xj |Vj |+ (k − xj)xj : Each node in X ∩ Vj
is head in exactly one stripe, there having all nodes Vj as its successors. Additionally,
there are (k − xj) stripes in which no node from X ∩ Vj has children. This leads to a
LiSS-damage of xj in each such stripe.

Thus, it holds that

aT (X ∩ Vj) =

xj−1∑
i=0

(|Vj |+ (k − 2i− 1)) =

xj−1∑
i=0

δC,kCi+j . (4.16)

Furthermore, aT (X) =
∑
j∈[C] a

T (X ∩ Vj) =
∑
j∈[C]

∑xj−1
i=0 δC,kCi+j is a sum over the

damage sequence in |X| distinct positions. Since the damage sequence (δC,ki )1≤i≤Ck is
non-increasing, we obtain an upper bound by summing up its |X| first elements.

Note, that this upper bound for Cluster Topologies coincides with the lower bound
Lemma 4.1.5 gave for the maximum LiSS-damage on every topology T ∈ T(n,C, k).
Hence, we obtain the following Theorem.
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Theorem 4.1.9 Characterization of Optimally LiSS-stable Topologies
A topology T ∈ T(n,C, k) is optimally LiSS-stable if and only if it holds that

∀x ∈ [n] : max
X⊆V,|X|=x

aT (X) =

min(x,Ck)∑
i=1

δC,ki .

Furthermore, we have identified the Cluster Topologies as a first subset of all optimally
LiSS-stable topologies. Again, this was first observed in [BSS09]. Since every class
T(n,C, k) contains Cluster Topologies, it also contains optimally LiSS-stable topologies.

4.1.4. Properties of Optimally LiSS-Stable Topologies

Given the characterization of optimally LiSS-stable topologies in Theorem 4.1.9, we can
now identify mandatory properties of such topologies. To do this, it will be convenient
to give a name to attacks that bear witness to the instability of a topology.

Definition 4.1.10 (Minimum) Strong Attack
An attack X ⊆ V on a topology T ∈ T(n,C, k) is called Strong Attack, if it holds
that

aT (X) >

min(|X|,Ck)∑
i=1

δC,ki .

A Strong Attack X is called Minimum Strong Attack, if there is no Strong Attack Y
with |Y | < |X| and no Strong Attack Y with |Y | = |X| and aT (Y ) > aT (X).

By definition, a topology without a (Minimum) Strong Attack must be optimally
LiSS-stable. Furthermore, Minimum Strong Attacks are restricted to nodes having a
high number of successors.

Lemma 4.1.11
For a Minimum Strong Attack X ⊆ V on topology T ∈ T(n,C, k), it holds that

∀v ∈ X : aT (X)− aT (X \ {v}) > δC,k|X| . (4.17)

In particular, this means that

∀v ∈ X : aT (v) > δC,kCk . (4.18)

Proof. We have |X| < Ck, since otherwise Strong Attack X would have to satisfy

aT (X) >
∑Ck
i=1 δ

C,k
i = kn. This is impossible because only kn source-to-peer paths

exist in T .
Assume there is a node v ∈ X with aT (X)− aT (X \ {v}) ≤ δC,k|X| . It holds that

aT (X \ {v}) ≥ aT (X)− δC,k|X| >

 |X|∑
i=1

δC,ki

− δC,k|X| =

|X\{v}|∑
i=1

δC,ki . (4.19)
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Thus, X \ {v} is also a Strong Attack, contradicting that X was of minimum size.

Property (4.18) follows from Property (4.17) because aT (v) ≥ aT (X)− aT (X \ {v})
and δC,k|X| ≥ δ

C,k
Ck .

Using Strong Attacks, we can now identify necessary properties of optimally LiSS-
stable topologies.

Corollary 4.1.12
In an optimally LiSS-stable topology T ∈ T(n,C, k), it holds that

∀v ∈ V : aT (v) ≤ δC,k1 . (4.20)

Proof. Otherwise, the set X = {v} would be a Strong Attack.

In every topology T ∈ T(n,C, k) with Property (4.20), we have

∀i ∈ [k] : |HTi | = C. (4.21)

Otherwise, there would be a stripe j ∈ [k] with |HTj | ≤ C− 1 (since
∑
i∈[k] |HTi | ≤ Ck).

Since the heads HTj together have n successors in stripe j, there were h ∈ HTi
with |succTi (h)| ≥ dn/(C − 1)e. Additionally counting h’s successors in the (k − 1)

remaining stripes leads to aT (h) ≥ dn/(C − 1)e+ (k − 1) > δC,k1 . However, this would
be a contradiction to the assumption that T has Property (4.20).

It is also easy to see, that an optimally LiSS-stable topology in T(n,C, k) must have
Ck distinct heads.

Lemma 4.1.13
An optimally LiSS-stable topology T ∈ T(n,C, k) has |HT | = Ck.

Proof. It holds that |HT | ≤ Ck, since T ∈ T(n,C, k).

If we had |HT | < Ck, the set X = HT would be a Strong Attack: Since δC,kCk ≥ 1, it

would hold that aT (X) = kn =
∑Ck
i=1 δ

C,k
i >

∑|X|
i=1 δ

C,k
i .

The heads in each stripe need to have almost equal successor numbers.

Lemma 4.1.14
In an optimally LiSS-stable topology T ∈ T(n,C, k), it holds that

∀i ∈ [k] ∀h ∈ HTi : dn/Ce ≥ |succTi (h)| ≥ bn/Cc. (4.22)

Proof. The upper bound follows from Corollary 4.1.12 together with the fact that
aT (h) ≥ |succTi (h)|+ (k − 1).

For the lower bound, assume there is h ∈ HTi with |succTi (h)| < bn/Cc and define
X := HTi \ {h}. Since T is stable, Equation 4.21 leads to |X| = C − 1.
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Removing the nodes X from Ti, only paths to successors of h remain intact. This
means |succTi (X)| > n− bn/Cc. Additionally, ∀j ∈ [k] \ {i} : |succTj (X)| ≥ |X| is true
by definition of the successor sets. Consequently, X is a Strong Attack:

aT (X) =
∑
j∈[k]

|succTj (X)| > n− bn/Cc+ (k − 1)|X| ≥
C−1∑
j=1

δC,kj . (4.23)

Heads whose successor number meets the upper bound, need to have at least one
head from each stripe as their successor. Heads whose successor number meets the
lower bound need to have heads from each but one other stripe among their successors.

Lemma 4.1.15
In an optimally LiSS-stable topology T ∈ T(n,C, k), for every stripe i ∈ [k] every
head h ∈ HTi satisfies∣∣∣{j ∈ [k]

∣∣∣ |succTi (h) ∩HTj | ≥ 1
}∣∣∣ ≥ k −

(⌈ n
C

⌉
− |succTi (h)|

)
. (4.24)

Proof. Assume there is head h ∈ HTi violating Property (4.24) and define the number
q := 1 + (dn/Ce − |succTi (h)|). Since, by definition, we have h ∈ succTi (h), there must
be distinct j1, . . . , jq ∈ [k]\{i} with succTi (h)∩HTjr = ∅ for r ∈ [q]. Since T is optimally
LiSS-stable, Equation (4.21) applies and no node is head in two stripes.

We show that X :=
⋃
r∈[q] H

T
jr
∪{h} is a Strong Attack. It holds that |X| = Cq+1 and

∀r ∈ [q] : |succTjr (X)| = n. Additionally, |succTi (X)| ≥ Cq + (dn/Ce − (q − 1)) follows

from |succTi (X)| = |succTi (X \ {h})|+ |succTi (h)|. At last, paths to the nodes X are
also disturbed in the remaining stripes: ∀r ∈ [k] \ {i, j1, · · · , jq} : |succTr (X)| ≥ Cq + 1.
Together, these observations lead to

aT (X) =

∑
r∈[q]

|succTjr (X)|

+ |succTi (X)|+

 ∑
r∈[k]\{i,j1,...,jr}

|succTr (X)|

 (4.25)

≥ qn+
(
Cq +

(⌈ n
C

⌉
− (q − 1)

))
+ (k − q − 1)(Cq + 1) (4.26)

= qn+ Cq(k − q) +
⌈ n
C

⌉
+ (k − 2q) (4.27)

> qn+ Cq(k − q) +
⌈ n
C

⌉
+ (k − 2q − 1) =

Cq+1∑
r=1

δC,kr . (4.28)

Hence, we obtain a contradiction with T ’s status of being optimally LiSS-stable.

Note that Lemma 4.1.15 allows situations as in Figure 4.3.
Furthermore, a head from stripe i whose successor number meets the upper bound

has at least one such head from each stripe j ∈ [k] \ {i} as successor or predecessor.
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(b) Optimal Attacks on T

Figure 4.3.: An optimally LiSS-stable topology T ∈ T(5, 2, 2) with head 4 not supplying
other heads.

Lemma 4.1.16
In an optimally LiSS-stable topology T ∈ T(n,C, k), for every stripe i ∈ [k] every
head h ∈ HTi with |succTi (h)| = dn/Ce satisfies

∀j ∈ [k] ∃v ∈ HTj : |succTj (v)| =
⌈ n
C

⌉
∧ (v ∈ succTi (h) ∨ v ∈ predTj (h)). (4.29)

Proof. For each stripe j ∈ [k], define ĤTj := {v ∈ HTj | |succTj (v)| =
⌈
n
C

⌉
}.

If n mod C = 0, Lemma 4.1.14 guarantees that ∀j ∈ [k] : HTj = ĤTj . Consequently,
Lemma 4.1.16 follows from Lemma 4.1.15.

If n mod C 6= 0, assume that there are h ∈ ĤTi and j ∈ [k] with succTi (h) ∩ ĤTj = ∅
and predTj (h) ∩ ĤTj = ∅. Then the attack X := ĤTj ∪ {h} has cardinality |X| ≤ C as

well as |succTi (X)| ≥ |ĤTj | + dn/Ce successors in Ti, |succTj (X)| ≥ |ĤTj | · dn/Ce+ 1

successors in Tj , and |succTr (X)| ≥ |ĤTj | + 1 successors in the remaining stripes
r ∈ [k] \ {i, j}.

We obtain

aT (X) = |succTi (X)|+ |succTj (X)|+
∑

r∈[k]\{i,j}

|succTr (X)| (4.30)

≥ |ĤTj |+
⌈ n
C

⌉
+ |ĤTj |

⌈ n
C

⌉
+ 1 + (k − 2)(|ĤTj |+ 1) (4.31)

= (|ĤTj |+ 1) ·
(⌈ n
C

⌉
+ (k − 1)

)
(4.32)

> |ĤTj | ·
(⌈ n
C

⌉
+ (k − 1)

)
+
(⌊ n
C

⌋
+ (k − 1)

)
=

|X|∑
r=1

δC,kr . (4.33)

Hence, X would be a Strong Attack, which contradicts that T is optimally LiSS-
stable.
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4.2. Rule-Based Construction of Optimally LiSS-Stable
Topologies

Building on the characterization and mandatory properties we have seen in the preced-
ing section, we now identify optimally LiSS-stable topologies that are more flexible
than Cluster Topologies. In particular, we define a set of polynomial-time-checkable
rules enforcing properties that are sufficient to make a topology optimally LiSS-stable.
By identifying such a rule set, we give peer-to-peer topology management systems a
guideline to efficiently build optimally LiSS-stable topologies without the strict limita-
tions applying to Cluster Topologies. In this process, we aim at demanding properties
that only slightly differ from the necessary properties identified in Section 4.1.4.

The rules shown in this section have been set up in cooperation with Andreas Brieg.
They are published in [BBG+09].

We start with an initial set of rules which will then be modified to our needs. All
rules assume, that a topology class T(n,C, k) is given in advance and that a topology
T ∈ T(n,C, k) is to be constructed.

• Not-Too-Many-Successors:
Ensure that ∀v ∈ V : aT (v) ≤ δC,k1 and ∀h ∈ HT : aT (h) ≥ δC,kC .

• Head Rule 1:
Ensure that ∀i, j ∈ [k] ∀h ∈ HTi : |succTi (h) ∩HTj | = 1.

• Head Rule 2:
Ensure that ∀i, j ∈ [k] ∀h ∈ HTi : v ∈ succTi (h) ∩HTj ⇒ |succTi (h)| = |succTj (v)|.

Note that the Not-Too-Many-Successors rule dictates the necessary properties identified
in both Corollary 4.1.12 and Lemma 4.1.14 (the latter since a head of stripe i also
receives all (k − 1) stripes [k] \ {i}). Head Rule 1 enforces a strengthened version of
the necessary property from Lemma 4.1.15 in which the exception for heads h ∈ HTi
with |succTi (h)| = bn/Cc is eliminated. Head Rule 2 forbids successor relationships
between heads with different numbers of successors in the stripe they are head of. In
doing that, it guarantees that T has the necessary property of Lemma 4.1.16. The
set of topologies in T(n,C, k) adhering to these rules is non-empty, since the Cluster
Topologies of Section 4.1.3 are a non-empty subset.

To introduce our next rule, we first have to define the concept of Head Topologies.

Definition 4.2.1 Head Topology H of T
For a given topology T ∈ T(n,C, k), the head topology H of T is a distribution
topology with k stripes and node set HT . Additionally, it holds that

∀v ∈ HT ∀i ∈ [k] : succHi (v) = succTi (v) ∩HT . (4.34)

A topology T that is head topology of itself, is called head topology.

Hence, the head topology H of a topology T ∈ T(n,C, k) is formed from T by
shortcutting all paths between heads having intermediate nodes only from V \HT and
removing the nodes V \HT from the topology. Figure 4.4 gives two examples.
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Figure 4.4.: Examples of head topologies.

We can now state the following rule.

• Heads-Are-Optimally-Stable: Ensure that the head topology H of T is iso-
morphic to an optimally LiSS-stable topology C ∈ T(Ck,C, k). Furthermore, the
LiSS-stablility of C must be checkable in polynomial-time.

Due to Lemma 4.1.13, every optimally LiSS-stable topology C ∈ T(Ck,C, k) satisfies
HC = V . Thus, C is a head topology. Each Cluster Topology in T(Ck,C, k) is suitable
for this rule, since its defining properties can be checked by an O(kn)-time tree traversal.
The identification of further suitable topologies is the topic of Section 4.3.

The Heads-Are-Optimally-Stable rule enforces the necessary property of Lemma 4.1.13,
since the head topologyH of T has to comply with it. Thus, we have |HT | = |HH| = Ck.

Adherence to the Heads-Are-Optimally-Stable rule is not a necessary condition
for optimally LiSS-stable topologies. This is demonstrated by the optimally LiSS-
stable topology shown in Figure 4.3. Its head topology, shown in Figure 4.4(b), is
unstable because it conflicts with the bounds on head successor numbers identified in
Lemma 4.1.14.

Next, we show that topologies adhering to the above rules must be LiSS-stable
against all attacks containing only heads.

Lemma 4.2.2
For a topology T ∈ T(n,C, k) adhering to the rules Not-Too-Many-Successors,
Head Rule 1, Head Rule 2 and Heads-Are-Optimally-Stable, it holds that

∀X ⊆ HT : aT (X) ≤
|X|∑
i=1

δC,ki . (4.35)
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Proof. For i ∈ [k], define H̆Ti := {h ∈ HTi | |succTi (h)| = bn/Cc} and ĤTi := HTi \ H̆Ti .
Due to the bounds on the successor number of heads specified by the Not-Too-Many-
Successors rule, it holds that ∀i, j ∈ [k] : |ĤTi | = |ĤTj | ∧ |H̆Ti | = |H̆Tj |. With Ĉ := |ĤT1 |
and C̆ := |H̆T1 |, we have C = Ĉ + C̆. Furthermore, define the sets Xi := X ∩HTi ,

X̂i := Xi ∩ ĤTi , and X̆i := Xi ∩ H̆Ti , as well as X̂ :=
⋃
i∈[k] X̂i and X̆ :=

⋃
i∈[k] X̆i.

Now, let H be the head topology of T . Due to its definition, H has the property
that ∀h ∈ HT ∀i ∈ [k] : h ∈ succHi (X)⇔ h ∈ succTi (X). Thus, it holds that

aT (X) =

k∑
i=1

|succTi (X) ∩HT |+
k∑
i=1

|succTi (X) \HT | (4.36)

≤ aH(X) +

k∑
i=1

(
|X̂i|

⌈ n
C

⌉
+ |X̆i|

⌊ n
C

⌋
− k · |Xi|

)
(4.37)

≤ aH(X) + |X̂|
⌈ n
C

⌉
+ |X̆|

⌊ n
C

⌋
− k|X|. (4.38)

The step from Term (4.36) to (4.37) uses that the Heads-Are-Optimally-Stable rule
enforces |HT | = Ck. This also means that the head sets of all stripes are disjoint.
Furthermore, Head Rule 1 demands that for each stripe i ∈ [k], each head h ∈ HTi
satisfies ∀j ∈ [k] : |succTi (h) ∩HTj | = 1. Together, these properties have the effect that

|succTi (h) \HT | = |succTi (h)| − k.

Now, Head Rule 2 forbids successor relationships between the nodes ĤT and H̆T .
Consequently, in each stripe of H, the node sets {s} ∪ ĤT and {s} ∪ H̆T induce source-
rooted trees having Ĉ and C̆ heads, respectively. Hence, over all stripes the sets induce
topologies Ĥ ∈ T(Ĉk, Ĉ, k) and H̆ ∈ T(C̆k, C̆, k). As will be shown in Lemma 4.3.7,
H is optimally LiSS-stable only if both Ĥ and H̆ are optimally LiSS-stable. The
corresponding proof does not depend on Lemma 4.2.2.

Consequently, we can upper-bound aH(X) in Inequality (4.38) by the respective
damage sequence sums on Ĥ and H̆.

aT (X) ≤
|X̂|∑
i=1

(
2k −

⌊
i− 1

Ĉ

⌋
− 1

)
+

|X̆|∑
i=1

(
2k −

⌊
i− 1

C̆

⌋
− 1

)
+ |X̂|

⌈ n
C

⌉
+ |X̆|

⌊ n
C

⌋
− k|X|

(4.39)

=

|X̂|∑
i=1

(⌈ n
C

⌉
+ k −

⌊
i− 1

Ĉ

⌋
− 1

)
+

|X̆|∑
i=1

(⌊ n
C

⌋
+ k −

⌊
i− 1

C̆

⌋
− 1

)
(4.40)

=

|X̂|∑
i=1

δC,kb i−1

Ĉ
cC+(i−b i−1

Ĉ
cĈ)

+

|X̆|∑
i=1

δC,kb i−1

C̆
cC+Ĉ+(i−b i−1

C̆
cC̆)

(4.41)

≤
|X|∑
i=1

δC,ki (4.42)
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Here, the sums in Term (4.41) run over disjoint subsets of the elements of the

damage sequence (δC,ki )1≤i≤Ck: For indices j summed up by the first sum, there is

q ∈ [0, k − 1] such that j ∈ [qC + 1, qC + Ĉ]. For indices j in the second sum, we have
j ∈ [qC + Ĉ + 1, (q + 1)C]. Since the damage sequence is non-increasing, we obtain an
upper bound for the Term (4.41) by summing up the first |X̂ + X̆| = |X| elements of
the damage sequence. This leads to Term (4.42).

Lemma 4.2.2 shows that topologies adhering to the Heads-Are-Optimally-Stable rule,
the Not-Too-Many-Successors rule, and the Head Rules 1 and 2 are optimally LiSS-
stable if, for each attack size, there is a worst-case attack containing only heads.

This is exactly what the Cluster Topologies achieve. They obey all rules (their head
topology is also a Cluster Topology) and have the property shown in Lemma 4.1.7.

However, instead of dictating clusters, here we choose to formulate a strengthened
version of the Not-Too-Many-Successors rule.

• Strictly-Not-Too-Many-Successors:
Ensure that ∀h ∈ HT : δC,k1 ≥ aT (h) ≥ δC,kC and ∀v ∈ V \HT : δC,kCk ≥ aT (v).

Theorem 4.2.3 Rules for Optimally LiSS-stable Topologies
Every topology T ∈ T(n,C, k) adhering to the Strictly-Not-Too-Many-Successors
rule, Head Rule 1, Head Rule 2 and the Heads-Are-Optimally-Stable rule is optimally
LiSS-stable in T(n,C, k).

Proof. The Strictly-Not-Too-Many-Successors rule dictates ∀v ∈ V \HT : δC,kCk ≥ aT (v).
Therefore, due to Lemma 4.1.11, every Minimum Strong Attack on T can contain only
heads. However, the existence of a Strong Attack X ⊆ HT is ruled out by Lemma 4.2.2.
Hence, there is no Minimum Strong Attack and T must be optimally LiSS-stable in
T(n,C, k).

Note that the topologies defined by the rule set of Theorem 4.2.3 contain some, but need
not contain all, Cluster Topologies from T(n,C, k). The primary reason for this is that,
in a rule-based topology T , a head h ∈ HTi must have at least a minimum number of
children. Possible children are heads hj ∈ HT \HTi , which must have |succTi (hj) ≤ 2|,
and non-heads v ∈ V \HT that have to satisfy |succTi (v)| ≤ δC,kCk −(k−1) =

⌊
n
C

⌋
−2k+2.

For n ≥ 2Ck, the successor limit of non-heads has at least the value of the limit for
heads. Hence, a head h ∈ HTi with aT (h) = δC,k1 must have at least

|childTi (h)| ≥

⌈
δC,k1 − k

δC,kCk − (k − 1)

⌉
=

⌈ ⌈
n
C

⌉
− 1⌊

n
C

⌋
− 2k + 2

⌉
(4.43)

children in Ti. For k ≥ 2, this value is greater 1 (however, it is at most 2 for
n ≥ 4Ck+ 2C). Such a lower bound on the successor number of heads is not present in
the definition of Cluster Topologies.

However, the conditions on topologies stated in Theorem 4.2.3 no longer generally
demand that nodes forward in at most one stripe. In the practical application of
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peer-to-peer live streaming systems, we can usually assume n� Ck and the availability
of a certain amount of potent nodes that could be used as heads. Then, the majority
of peers will have successor numbers far below the limits dictated by Strictly-Not-Too-
Many-Successors. Thus, all these nodes obtain complete liberty in their forwarding
decisions.

Furthermore, rule-based topologies promise to be more compatible with the demands
posed when optimizing distribution topologies towards minimizing maximum LoSS-
damage. In particular, Chapter 5 will show that the high overlap in the successor sets
of heads in Cluster Topologies prevents such a minimization.

4.3. Optimally LiSS-Stable Head Topologies

Studying the rules of Theorem 4.2.3, it is quite dissatisfactory to see that, although the
Heads-Are-Optimally-Stable rule demands for an optimally LiSS-stable head topology
from T(Ck,C, k), our knowledge about these topologies is still rather limited. Indeed,
the only optimally LiSS-stable head topologies known so far are the Cluster Topologies
in T(Ck,C, k). Furthermore, each pair of such Cluster Topologies is isomorphic, so
that we essentially know only a single optimally LiSS-stable head topology.

Therefore, we now study necessary and sufficient conditions leading to optimally
LiSS-stable head topologies. The obtained results are published in [GFS11].

The analysis in this section is based on the concept of dependency graphs, which will
be introduced in Subsection 4.3.1. The following Subsection 4.3.2 highlights special
stability properties of head topologies having unconnected dependency graphs. Finally,
we engage in a general study of the dependency graphs of optimally LiSS-stable head
topologies in Subsection 4.3.3.

4.3.1. A Specialized Stability Characterization

For the following analysis, we transform the damage-based characterization of optimally
LiSS-stable topologies in Theorem 4.1.9 into a graph-based characterization that is
specialized for head topologies.

The starting point for this step is the following concept.

Definition 4.3.1 Dependency Graph of Head Topology H
Let H be a head topology with peers V . The dependency graph D(H) = (V,A) of
head topology H is a loopless, undirected multigraph, such that A contains each edge
{u, v} with u, v ∈ V, u 6= v exactly |{i ∈ [k] | u ∈ succHi (v) ∨ v ∈ succHi (u)}| times.

Figure 4.5 gives an example of such a dependency graph. If possible, we will generally
use the convention to draw dependency graphs such that heads from the same head set
HHi are aligned horizontally.

Based on our findings in Section 4.1.4, we already know the following necessary
properties of optimally LiSS-stable topologies in T(Ck,C, k).
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Figure 4.5.: A clustered head topology and its dependency graph.

Corollary 4.3.2
An optimally LiSS-stable topology H ∈ T(Ck,C, k) has the following properties:

1. |HH| = Ck

2. ∀i ∈ [k] : |HHi | = C

3. ∀i, j ∈ [k] h ∈ HHi : |succHi (h) ∩HHj | = 1

4. ∀h ∈ HH !∃i ∈ [k] : |succH→i (h) > 0|

Proof. Property 1 follows from Lemma 4.1.13, Property 2 from Corollary 4.1.12,
Property 3 from Lemma 4.1.15 and Property 4 from the combination of the Properties 1
and 2, Corollary 4.1.12 and Lemma 4.1.14.

The dependency graph D(H) of a topology H ∈ T(Ck,C, k) with all properties from
Corollary 4.3.2 has the following characteristic features:

• D(H) is k-partite with parts HTi for i ∈ [k]: In a distribution topology, heads of
the same stripe i have no successor relationships in Ti. Additionally, Property 4
forbids to have successors in other stripes.

• For each i ∈ [k] and each head h ∈ HHi the multiplicity (cmp. Section 2.2.1) of h
and each set HHj with i 6= j is mD(H)({h}, HHj ) = 2: Due to Property 1, it holds

that HHi ∩HHj = ∅. So, due to the Property 3, h has exactly one head from HHj
among its successors in stripe i and there must be exactly one predecessor of h
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from HTj . Finally, h and the heads from HHj have successors besides themself
only in stripe i resp. j (Property 4).

• D(H) is 2(k − 1)-regular: This follows from the above observations.

Property 4 also causes that ∀i ∈ [k] : h ∈ V \HHi ⇔ succHi (h) = {h} and

∀i, j ∈ [k] ∀h ∈ HHi : |predHj (h) \ {s, h}| =

{
0 , if j = i

1 , otherwise.
(4.44)

Since ∀i ∈ [k] ∀X ⊆ V : X ⊆ succHi (X) is true due to the definition of successor sets,
we can then express the LiSS-damage of an attack X on H in the following way (cmp.
Section 2.2.1 for the definition of eD(H)(X)).

aH(X) =
∑
i∈[k]

|succHi (X)| (4.45)

=
∑
i∈[k]

|X ∩HHi |+ (|X \HHi |+ |succHi (X) \X|) (4.46)

= |X|+
∑
i∈[k]

∑
v∈X
|{v} \HHi |+ |succHi (v) \ {v}| − |(succHi (v) \ {v}) ∩X|

(4.47)

= |X|+
∑
i∈[k]

∑
v∈X
|predHi (v) \ {s, v}|+ |succHi (v) \ {v}|

−
∑
i∈[k]

∑
v∈X
|(succHi (v) \ {v}) ∩X|

(4.48)

= |X|+
∑
v∈X

∑
i∈k

|{u ∈ V \ {v} | v ∈ succHi (u) ∨ u ∈ succHi (v)}|

−
∑
v∈X

∑
i∈[k]

|{u ∈ X \ {v} | u ∈ succHi (v)}|
(4.49)

= |X|+
∑
v∈X

mD(H)(v)− 1

2

∑
v∈X

mD(H)[X](v) (4.50)

= |X|+

(∑
v∈X

mD(H)(v)

)
− eD(H)(X) (4.51)

Hence, aH(X) equals the value |X| plus the multiplicity sum over all nodes X minus
the number of edges incident to two nodes from X. Furthermore, this equals |X| plus
the number of edges of D(H) that are incident to X. See Figure 4.6 for an example of
this equality.

Next, we establish the following definition.
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Figure 4.6.: Attack X = {1, 3, 6} in a head topology H and its dependency graph D(H)
(dashed connections lost).

Definition 4.3.3 The Edge Sequence σCi
For C, k ∈ N, the elements of the edge sequence (σCi )1≤i≤Ck are defined by

σCi := 2

⌊
i− 1

C

⌋
.

For x ∈ [0, k− 1] and y ∈ [C], we can give the following closed form expression for sums
over the first Cx+ y elements of the edge sequence.

Cx+y∑
i=1

σCi =

Cx∑
i=1

2

⌊
i− 1

C

⌋
+

Cx+y∑
i=Cx+1

2

⌊
i− 1

C

⌋
(4.52)

= 2C

 x∑
j=1

(j − 1)

+ y · 2x (4.53)

= Cx(x− 1) + 2xy (4.54)

The edge sequence plays an important role in the characterization of optimally LiSS-
stable head topologies using dependendy graphs.
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Lemma 4.3.4 Characterization of Optimally LiSS-stable Head Topologies
A head topology H ∈ T(Ck,C, k) is optimally LiSS-stable if and only if it has the
properties given in Corollary 4.3.2 and for each X ⊆ V with |X| = Cx + y and
x ∈ [0, k − 1], y ∈ [C], it holds that

eD(H)(X) ≥
|X|∑
i=1

σCi = Cx(x− 1) + 2xy.

Proof. The properties given in Corollary 4.3.2 were shown to be necessary.
Since n = Ck, it holds that δC,k1 = 2k − 1 and σCi = δC,k1 − δC,ki . Furthermore, D(H)

must be 2(k − 1)-regular. Using Equation (4.51), we obtain

aH(X) = |X|+

(∑
v∈X

mD(H)(v)

)
− eD(H)(X) (4.55)

≤ |X|+ |X|(2k − 2)−
|X|∑
i=1

σCi (4.56)

= |X| · δC,k1 −
|X|∑
i=1

(δC,k1 − δC,ki ) (4.57)

=

|X|∑
i=1

δC,ki . (4.58)

Consequently, Lemma 4.3.4 follows from Theorem 4.1.9.

We see, that a Strong Attack X with |X| = Cx + y on a topology H ∈ T(Ck,C, k)
with the properties given in Corollary 4.3.2 will induce less than Cx(x− 1) + 2xy edges
in D(H). Hence, the dependency graphs of optimally LiSS-stable head topologies
have to originate from a (multi-)graph family without sparse induced subgraphs. In the
following, we will aim to identify such families.

4.3.2. The Case of Unconnected Dependency Graphs

At first, the LiSS-stability of head topologies with unconnected dependency graphs is
led back to the LiSS-stability of those with connected dependency graphs. This will
allow us to strengthen results in the following Subsection 4.3.3.

Definition 4.3.5 Subtopologies of H
Let H ∈ T(Ck,C, k) be a head topology, such that D(H) has r connected components.
Let V1, . . . , Vr be the node sets of these components.

For each i ∈ [r], the following tupel is called subtopology of H:

Hi = (T1[{s} ∪ Vi], . . . , Tk[{s} ∪ Vi])
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Lemma 4.3.6
Let H ∈ T(Ck,C, k) be a head topology with the properties given in Corollary 4.3.2
and subtopologies H1, . . . ,Hr.

For each i ∈ [r], Hi is a head topology from T(Cik,Ci, k), where Ci ∈ [C].
Furthermore, Hi has the properties given in Corollary 4.3.2.

Proof. D(H) is k-partite with parts HH1 , . . . ,H
H
k and each node has 2 edges into

each part besides its own. Therefore, each connected component i must contain
the same number of heads from every stripe: ∀a, b ∈ [k] : |Vi ∩ HHa | = |Vi ∩ HHb |.
Otherwise, there would be stripes a, b ∈ [k] with |Vi ∩ HHa | < |Vi ∩ HHb |, so that
mD(H)(Vi ∩HHa , Vi ∩HHb ) = 2|Vi ∩HHa | < 2|Vi ∩HHb | = mD(H)(Vi ∩HHb , Vi ∩HHa ).
However, since both sets are disjoint, their multiplicity must be symmetric and we
obtain a contradiction.

Since D(H) contains edges for each successor relation between nodes u, v ∈ V , the
induced subgraph Ta[{s} ∪ Vi] is connected for each node set Vi and stripe Ta.

Furthermore, each Hi inherits its successor relationships from H. Hence, it is a head
topology and all remaining properties given in Corollary 4.3.2 apply.

Lemma 4.3.7
A head topology H ∈ T(Ck,C, k) with the properties given in Corollary 4.3.2 and
subtopologies H1, . . . ,Hr is optimally LiSS-stable in T(Ck,C, k) if and only if, for
each i ∈ [r], the subtopology Hi is optimally LiSS-stable in T(Cik,Ci, k).

Proof. “Only-If”: Assume there exists a Strong Attack Xa on subtopology Ha such
that |Xa| = Caxa + ya and xa ∈ [0, k − 1], ya ∈ [Ca].

For each j ∈ [r] \ {a}, define sets Xj :=
⋃xa
s=1 Vj ∩HHs formed by the heads of the

first xa stripes in Hj , respectively. Due to Lemma 4.3.6, we have a multiplicity of 2Cj
between the heads of each stripe pair in Hj . Heads of the same stripe do not have
common edges. This leads to eD(H)(Xj) = 2Cj

(
xa
2

)
= Cjxa(xa − 1).

Since the peer sets V1, . . . , Vr are a partition of V , it holds that
∑r
i=1 Ci = C and the

set X :=
⋃r
i=1 Xi has (

∑r
i=1 Ci)xa + ya nodes. Since D(H) contains no edges between

nodes of different subtopologies, X induces eD(H)(X) =
∑r
i=1 eD(H)(Xi) edges. Our

assumption eD(H)(Xa) < Caxa(xa − 1) + 2xaya then leads to

eD(H)(X) < (

r∑
i=1

Ci)xa(xa − 1) + 2xaya =

|X|∑
i=1

σCi . (4.59)

Hence, X is a Strong Attack and H is not optimally LiSS-stable.
“If”: Assume that all subtopologies are optimally LiSS-stable. Let X be an arbitrary

attack on H and define Xi := X ∩ Vi for each i ∈ [r].

It holds that
∑
i=1 Ci = C,

∑
i=1 |Xi| = |X|, and ∀i ∈ [r] : eD(Hi)(Xi) ≥

∑|Xi|
a=1 σ

Ci
a .

Furthermore, the edge sequence (σCa )1≤a≤Ck has the following property:

∀i ∈ [r], p ∈ [0, k − 1], q ∈ [Ci] : σ
C
pC+q+

∑i−1
a=1 Ca

= σCipCi+q = 2p. (4.60)

74



4.3. Optimally LiSS-Stable Head Topologies

For i, j ∈ [r], i 6= j, these equivalencies map the elements of (σCia )1≤a≤Cik and

(σ
Cj
a )1≤a≤Cjk to disjoint index regions of (σCa )1≤a≤Ck. Since subtopologies repre-

sent connected components in D(H) and since the edge sequence is non-decreasing, we
can write

eD(H)(X) =
∑
i∈[r]

eD(Hi)(Xi) ≥
∑
i∈[r]

|Xi|∑
a=1

σCia ≥
|X|∑
a=1

σCa . (4.61)

Hence, X is not a Strong Attack. Since it was chosen arbitrarily, the same applies to
all attacks on H.

4.3.3. Dependency Graphs of Optimally LiSS-Stable Head
Topologies

Now, we study dependency graphs of optimally LiSS-stable head topologies.
Given a head topology H, we will often be interested in the neighborhood of a peer

v ∈ V in D(H) = (V,A). It is defined as

N(v) := {u ∈ V | {u, v} ∈ A} and Ni(v) := N(v) ∩HHi .

Multigraphs in which the neighborhood of each node induces a quite dense subgraph
are the claw-free graphs.

Definition 4.3.8 Claw-Free Graph [BLS99]
A multigraph G = (V,E) is called claw-free, if for each triple of distinct nodes
v1, v2, v3 ∈ V with v1, v2, v2 ∈ N(v) for some v ∈ V , it holds that eG({v1, v2, v3}) ≥ 1.

Claw-free graphs obtained their name from the absence of the K1,3, the claw graph, as
an induced subgraph. A direct consequence of this definition is that for nodes v ∈ V
and u ∈ N(v), the nodes N(v) \N(u) have to induce a clique. Otherwise v, u and two
nodes from N(v) \N(u) without a common edge would induce a claw.

The claw-freeness of a given graph G = (V,E) can näıvely be determined in O(|V |4)
by testing for each combination of 4 nodes whether they induce a claw.

We show that claw-freeness is a necessary condition on the dependency graphs of
optimally LiSS-stable head topologies.

Definition 4.3.9 Head Stability Requirements
Let H be a head topology from T(Ck,C, k). The following requirements are called
Stability Requirements.

1. D(H) is claw-free.

2. For distinct stripes a, i, j ∈ [k], it holds that

∀v ∈ HHa ∀u ∈ Ni(v) : mD(H)({u}, Nj(v)) ≥ 2

|Ni(v)|
.
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HHj

HHi

HHa

Violates Req.:

v

u

2

v

u

2

v

u

2

v

u

1, 2

v

v2

v3

v1

1

Figure 4.7.: Neighborhoods violating Stability Requirements of Definition 4.3.9 (edges
to unknown nodes from HHa \ {v} dashed).

Theorem 4.3.10
Every optimally LiSS-stable head topology satisfies the Stability Requirements.

Proof. Assume that head topology H is optimally LiSS-stable and violates Require-
ment 2. For v ∈ HHa let u ∈ Ni(v) be the node without the required multiplicity to
Nj(v). H must have all properties given in Corollary 4.3.2 and thus, in D(H), each
head has multiplicity two to the head sets of other stripes. Therefore, for all q ∈ [k]\{a}
and w ∈ Nq(v), we must have mD(H)(w, v) = mD(H)(v, w) = 2/|Nq(v)|. This also leads
to mD(H)(w,H

H
a \ {v}) = 2− 2/|Nq(v)|. Since HHa and Nj(v) both are independent

sets in D(H), the node set X := {u} ∪Nj(v) ∪HHa \ {v} induces

eD(H)(X) = mD(H)({u}, HHa \ {v}) +mD(H)({u}, Nj(v)) +mD(H)(Nj(v), HHa \ {v})

(4.62)

<

(
2− 2

|Ni(v)|

)
+

2

|Ni(v)|
+ |Nj(v)| ·

(
2− 2

|Nj(v)|

)
(4.63)

= 2 · |Nj(v)| =
C+|Nj(v)|∑

r=1

σCr (4.64)

edges using C + |Nj(v)| nodes. Hence, X is a Strong Attack.
Now assume H violates Requirement 1 and let v1, v2, v3, v ∈ V with v1, v2, v3 ∈ N(v)

induce a claw inD(H). There is a ∈ [k] with v ∈ HHa . Now, X := {v1, v2, v3} ∪HHa \ {v}
is a Strong Attack of C + 2 nodes inducing at most 3 edges: Both {v1, v2, v3} and HHa
are independent sets and each vi ∈ {v1, v2, v3} can have at most one other edge into
HHa besides its edge(s) to v.

The identification of a Strong Attack in both cases contradicts the assumption that
H was optimally LiSS-stable.

Note that Requirement 2 strengthens Requirement 1 in neighborhoods containing
parallel edges. This has interesting consequences.
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Corollary 4.3.11
In the dependency graph D(H) = (V,A) of an optimally LiSS-stable head topology
H, the set of parallel edges induces a subgraph consisting only of cliques. Additionally,
for each pair u, v ∈ V with mD(H)(u, v) = 2, it holds that N(u) \ {v} = N(v) \ {u}.

Proof. Otherwise, Requirement 2 of Theorem 4.3.10 is violated. In particular, there are
distinct a, i, j ∈ [k], such that v ∈ HHa , u ∈ HHi , and Nj(v) 6= Nj(u). Assuming that
D(H) is claw-free, neighborhoods isomorphic to one of the three left-most neighborhoods
in Figure 4.7 could be found.

If the dependency graph of an optimally LiSS-stable head topology in T(Ck,C, k)
consists only of cliques with parallel edges, it must contain C cliques of k nodes (due
to the multiplicity constraints). These are exactly the dependency graphs of Cluster
Topologies in T(Ck,C, k) (e.g., see Figure 4.5), since they have only tit-for-tat successor
relationships between their heads. Thus, we have shown that Cluster Topologies are the
only optimally LiSS-stable head topologies with only parallel edges in their dependency
graph.

In the next step, we identify a property of dependency graphs that is sufficient to
guarantee optimal LiSS-stability. For this, we have to introduce yet another graph class:
the line graphs. From the possible characterizations, we choose a more uncommon one.

Definition 4.3.12 Line Graph [MM99]
A multigraph G = (V,E) is called line graph, if E can be partitioned into sets
E1, . . . , Er such that for each i ∈ [r] the set Ei induces a simple clique in G and each
v ∈ V is member in exactly two such cliques.

Figure 4.8 shows a dependency graph that is a line graph. The question whether a
given graph G = (V,E) is a line graph can be determined in time O(|V |+ |E|) [Rou73].

Theorem 4.3.13 Line Graph Criterion
A head topology H ∈ T(Ck,C, k) is optimally LiSS-stable if it has the properties
listed in Corollary 4.3.2 and D(H) = (V,A) is a line graph.

Proof. Let X ⊆ V with |X| = Cx + y (s.t. x ∈ [0, k − 1], y ∈ [C]) be an arbitrary
attack on H and let A1, . . . , Ar be the line graph’s characteristic partition of the edge
set A. Slightly abusing notation, we will also use A1, . . . , Ar to denote the (complete)
subgraphs of D(H) that are induced by the respective edge sets. For i ∈ [r], the nodes
from X occuring in Ai will be denoted as Xi.

Since D(H) is k-partite, 2(k − 1)-regular, and each node is incident to exactly two
cliques, each of the cliques A1, . . . , Ar has to contain k nodes and there must be exactly
r = 2C such cliques. Since A1, . . . , Ar is a partition of the edge set, it holds that

eD(H)(X) =

2C∑
i=1

eAi(Xi). (4.65)
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Figure 4.8.: A dependency graph that is a line graph.

For i ∈ [2C], set xi := |Xi|. Since Ai is a simple clique, the xi nodes induce
(
xi
2

)
edges

in Ai. Furthermore, each node v ∈ V is member in exactly two cliques. This leads to∑2C
i=1 xi = 2|X| = 2(Cx+ y).
Due to Lemma A.0.2, the number of overall induced edges will be minimized if

∀i ∈ [2C] : xi ∈
[⌊

2(Cx+y)
2C

⌋
,
⌈

2(Cx+y)
2C

⌉]
= [x, x+ 1] . In such a setting there are 2y

cliques with an index i such that xi = x+ 1. Thus, it holds that

eD(H)(X) =

2C∑
i=1

xi(xi − 1)

2
(4.66)

≥ (2C − 2y)
x(x− 1)

2
+ 2y

(x+ 1)x

2
(4.67)

= Cx(x− 1) + 2xy. (4.68)

Consequently, H meets the characterization of Lemma 4.3.4.

Theorem 4.3.13 has interesting implications for Strong Attacks on head topologies.

Corollary 4.3.14
A Strong Attack X on a head topology H ∈ T(Ck,C, k) with the properties given in
Corollary 4.3.2 contains heads of at least 3 stripes of H.

Proof. If X ⊆ HHa ∪HHb for a, b ∈ [k], then it holds that eD(H)(X) = eD(H)[HHa ∪HHb ](X).

However, due to the properties given in Corollary 4.3.2, D(H)[HHa ∪HHb ] has 2C nodes,
2C edges, and is 2-regular. Since every edge is a 2-clique, this graph is a line graph.
Furthermore, it is a valid dependency graph for a head topology from T(2C,C, 2).

Hence, as shown in the proof of Theorem 4.3.13, X induces more than
∑|X|
i=1 σ

C
i edges

and cannot be a Strong Attack.

The class of optimally LiSS-stable head topologies described by the Line Graph
Criterion contains the Cluster Topologies (which have dependency graphs consisting
of C cliques with parallel edges). Membership can be checked in linear time and
appropriate dependency graphs can easily be constructed by packing 2C simple k-
cliques into an edgeless multigraph while maintaining the multiplicity limitations and
k-partiteness.
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(a) 3 induced edges, |X| = C + 2 (b) 9 induced edges, |X| = 2C + 1

Figure 4.9.: Strong Attacks in dependency graphs of head topologies conforming to the
Stability Requirements (dashed edges wrap around, attacked nodes gray).

However, the topologies conforming to the Stability Requirements but that do not
meet the Line Graph Criterion still form a gap containing head topologies of unknown
LiSS-stability status. As can be seen in the Figures 4.9 and 4.10, this gap contains
both optimally LiSS-stable and unstable head topologies. The LiSS-stability of the
depicted examples can be verified by the forthcoming results.

To obtain insights about the LiSS-stability of head topologies in this gap, we
investigate the existence conditions of Minimum Strong Attacks.

Lemma 4.3.15 Properties of Minimum Strong Attacks
Let H ∈ T(Ck,C, k) meet the Stability Requirements and have the properties
given in Corollary 4.3.2. A Minimum Strong Attack X with |X| = Cx + y
(s.t. x ∈ [0, k − 1], y ∈ [C]) has the following properties:

1. C + 2 ≤ Cx+ y ≤ Ck
2

2. y ≤ Cx+2
2x+1

3. eD(H)(X) = Cx(x− 1) + 2xy − 1

4. maxv∈X mD(H)(v,X) = 2x− 1

Proof. First, we prove the lower bound in Property 1. We must have x ≥ 1, since
no attack can induce less than C · 0 · (0− 1) + 2y · 0 = 0 edges. Hence, assume that
|X| = C + 1. Then, the Strong Attack X induces ε ∈ {0, 1} edges in D(H). Let Xε be
the (0 or 2) nodes of X inducing an edge.

We study the multiplicity between V \X and X in D(H). Figure 4.11(a) shows the
possible neighborhoods of each v ∈ V \X with |Xε ∩N(v)| < 2 in X. It has to hold
that |N(v) ∩X| ≤ 2, since otherwise we had a claw in D(H). In particular, it holds
that mD(H)({v},X) ≤ 2, because if v has parallel edges to a node u ∈ X then u has
edges to all other neighbors of v, due to Requirement 2 of the Stability Requirements.
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(a) (b)

(c)

Figure 4.10.: Dependency graphs of optimally LiSS-stable head topologies violating
the Line Graph Criterion (dashed edges wrap around).

By assumption, N(v)∩X is an independent set. Hence, if v has parallel edges, it holds
that N(v) ∩X = {u} and mD(H)({v}, X) = 2.

Due to analogue arguments, each v ∈ V \X with |Xε ∩N(v)| = 2 has |N(v)∩X| ≤ 3
and mD(H)({v},X) ≤ 3. Figure 4.11(b) shows the occuring neighborhoods. If such
nodes exist, they are neighbors to both nodes Xε. Hence, they must be heads of different
stripes than the nodes Xε and there can be at most 2(k− 2) of them. With these upper
bounds on the multiplicity of individual nodes v ∈ V \X to X, we obtain an upper
bound for the whole set:

mD(H)(V \X,X) ≤ 2|V \X|+ ε(2(k − 2)) = 2(Ck − (C + 1)) + ε(2(k − 2)). (4.69)

V \X X

v

V \X X

v

u

(a) The case |N(v) ∩Xe| < 2.

V \X X

v

V \X X

v

u

(b) The case |N(v) ∩Xε| = 2.

Figure 4.11.: Possible neighborhoods of v ∈ V \X in X in the proof of Lemma 4.3.15.
Dashed objects could, but need not exist.

80



4.3. Optimally LiSS-Stable Head Topologies

Since D(H) is 2(k − 1)-regular, the number of edges leaving the set X is

mD(H)(X,V \X) = (C + 1)2(k − 1)− 2ε. (4.70)

This implies mD(H)(V \ X,X) < mD(H)(X,V \ X), because k ≥ 1 and ε ∈ {0, 1}.
However, this is impossible since X and V \X are disjoint. Hence, a Strong Attack X
with |X| < C + 2 does not exist.

Next, we prove that D(H)[X] contains a node of multiplicity at least 2x− 1. From
|X| ≥ C + 2 follows eD(H)(X) ≥ 1. Otherwise, X would contain an independent set
of cardinality C + 1, which would be a smaller Strong Attack than X. Since X is a
Minimum Strong Attack, this is impossible. Let v ∈ X be a node incident to an edge in
D(H)[X]. The subset X ′ := X \ {v} has to satisfy eD(H)(X

′) ≥ Cx(x− 1) + 2x(y − 1)
(also for y = 1, since Cx(x− 1) = C(x− 1)(x− 2) + 2C(x− 1)). Thus, the average node

multiplicity in D(H)[X ′] is
2eD(H)(X

′)

|X′| ≥ (2x− 2) + 2(y−1)(x+1)
Cx+y−1 ≥ 2x− 2. Consequently,

either there is a node of multiplicity at least 2x− 1 in D(H)[X ′] or all nodes X ′ have
multiplicity 2x− 2. In D(H)[X], at least one node from X ′ has an additional edge to v.
Hence, there must be u ∈ X ′ with mD(H)({u}, X) ≥ 2x− 1 = σCCx+y − 1.

Since X \ {u} is not a Strong Attack, it holds that eD(H)(X \ {u}) ≥
∑Cx+y−1
i=1 σCi .

However, X is strong and induces mD(H)({u}, X) additional edges. We obtain

σCCx+y − 1 +

Cx+y−1∑
i=1

σCi ≤ mD(H)({u}, X) + eD(H)(X \ {u}) = eD(H)(X) <

Cx+y∑
i=1

σCi .

(4.71)
Inequality 4.71 confirms that eD(H)(X) = Cx(x−1)+2xy−1, thereby proving Property 3.
Furthermore, it enforces that mD(H)({u}, X) = 2x− 1. The same argument applies to
all other v ∈ X with mD(H)({v}, X) ≥ 2x− 1. We obtain Property 4.

Due to the multiplicity upper bound of Property 4, the attack X can induce at most
eD(H)(X) ≤ (Cx+ y)(2x− 1)/2 edges. However, for y > Cx+2

2x+1 , this is less than the
Cx(x− 1) + 2xy − 1 edges necessary for Property 3. We obtain Property 2.

Finally, we prove the upper bound in Property 1. For this, we show that if X is a
Minimum Strong Attack, then X̄ := V \X is also a Strong Attack. Due to Property 3,
the fact that D(H) is 2(k − 1)-partite, and |A| = Ck(k − 1), it holds that

eD(H)(X̄) = |A| − |X| · 2(k − 1) + eD(H)(X)

= Ck(k − 1)− (Cx+ y)2(k − 1) + Cx(x− 1) + 2xy − 1

= (k − 1)(Ck − 2Cx− 2y) + Cx(x+ 1)− 2x(C − y)− 1

= (k − 1)(Ck − 2Cx− 2C) + Cx(x+ 1) + (C − y)(2(k − 1)− 2x)− 1

= C ((k − 1)(k − 2x− 2) + x(x+ 1)) + 2(k − x− 1)(C − y)− 1

= C ((k − x− 1)(k − x− 2)) + 2(k − x− 1)(C − y)− 1

=

C(k−x−1)+(C−y)∑
i=1

σCi

− 1 =

 |X̄|∑
i=1

σCi

− 1. (4.72)
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If |X| > Ck/2, it holds that X̄ ≤ Ck/2 < |X|. Hence, X̄ would be a Strong Attack
smaller than X. This is impossible.

Using Lemma 4.3.15, we can identify additional optimally LiSS-stable head topologies.

Corollary 4.3.16
LetH ∈ T(Ck,C, k) be a head topology with subtopologiesH1, . . . ,Hr, the properties
given in Corollary 4.3.2, and that meets the Stability Requirements. For each
subtopology Hi, there is Ci with Hi ∈ T(Cik,Ci, k).

Head topology H is optimally LiSS-stable, if k ≤ 4 and ∀i ∈ [r] : Ci ≤ 3.

Proof. Each Minimum Strong Attack X on an arbitrary subtopology Hi has the
properties listed in Lemma 4.3.15. With k ≤ 4, Property 1 demands that x = 1 and
y ≥ 2. However, since Ci ≤ 3, the latter conflicts with Property 2. The absence of
Minimum Strong Attacks makes all subtopologies optimally LiSS-stable. The stability
of H follows from Lemma 4.3.7.

The Figures 4.10(a) and 4.10(b) show dependency graphs of such topologies.
A restriction to head topologies with k ≤ 4 has yet another advantage. We show

that it leads to the fact that Minimum Strong Attacks will induce exactly 3 edges in
the topology’s dependency graph.

Lemma 4.3.17
Let H ∈ T(Ck,C, k) be a head topology with k ≤ 4, conforming to the Stability
Requirements and with the properties given in Corollary 4.3.2.

If H is not optimally LiSS-stable, then there is a Minimum Strong Attack
X3 ⊆ V of cardinality |X3| = C + 2, such that D(H)[X3] has exactly three edges
{u1, v1}, {u2, v2} and {w1, w2}. Additionally, in D(H), each node in these edges can
be reached from w1 by a path over at most 3 hops.

Proof. Let X be an arbitrary Minimum Strong Attack on H. There are x ∈ [0, k − 1]
and y ∈ [C] such that |X| = Cx+ y. Due to Lemma 4.3.15, we know that x = 1 and
that D(H)[X] has 2y− 1 edges. Additionally, these edges are a matching in D(H). We
split X into the set Xe containing the 2(2y − 1) nodes incident to induced edges and
the set Xē := X \Xe.

Since D(H) is k-partite with the head sets HH1 , . . . , H
H
k as parts, each induced edge

contains heads from two different stripes. On average, each head set is incident to
at least 2(2y − 1)/k ≥ 1/2 · (2y − 1) = y − 1/2 of these egdes. Thus, there is a stripe
i ∈ [k] such that HHi is incident to at least y, i.e., more than half, of the induced edges.

Now, let {u, v} be an edge of D(H)[X] with u ∈ HHi . Since H has the properties
given in Corollary 4.3.2, v has one other edge to a node u′ ∈ HHi \X. Distinguish the
following cases:

1. |N(u′)∩X| = 1: This case cannot appear. Otherwise, the set X ′ := X \{v}∪{u′}
is a Strong Attack of cardinality |X| that induces one edge less than X. Thus, X
would not be a Minimum Strong Attack. The difference between both attacks is
sketched in Figure 4.12(a).
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HHi u
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u′ u

v

u′

(a) Difference of attacks X and X′ in Case 1.

HHi u

v

u′

v′

u

v

u′

v′

(b) Difference of attacks X and X′ in Case 2a.

HHi u

v

u′

v′

(c) The Case 2b.

HHi u′1 u′2u1 u2

v1 v2

w1

w2

(d) Scheme of attack X3 = X3
e ∪X3

ē .

Figure 4.12.: Illustrations for the proof of Lemma 4.3.17 (nodes from X resp. X ′ gray,
only edges between depicted nodes shown).

83



4. LiSS-Stability and Topology Construction Rules

2. |N(u′) ∩X| = 2: Again, distinguish the following cases:

a) N(u′) ⊆ Xe: This case cannot appear. Here, u′ is neighbored to a
second node v′ that is incident to an edge in D(H)[X]. Then, the set
X ′ := X \ {v, v′} ∪ {u′} is an attack of cardinality |X| − 1 that induces
2 = σC|X| edges less than X. Thus, X was not a Minimum Strong Attack,

since X ′ is a Strong Attack, too. The difference between both attacks is
sketched in Figure 4.12(b).

b) N(u′) ∩X = {v, v′} with v′ ∈ Xē: This case may appear. An example is
shown in Figure 4.12(c). We must have mD(H)(u

′, v′) = 1, because if {u′, v′}
was a parallel edge, the Stability Requirements would enforce the existence
of an edge {v, v′}. Since v′ ∈ Xē, such an edge does not exist.

Note, that we can ‘move the induced edge to u′’ by modifying X to be
X ′ := X \ {v} ∪ {u′}. Then, X ′ is also a Minimum Strong Attack. Further-
more, if Case 2b applies to the ‘new’ edge {u′, v′}, too, we can continue this
process. Since, each time, it holds that |N(u′)∩X| = 2 and |N(v)∩HHi | = 2,
the nodes u′, v from the iterated process form a (loopless) path that is unique
for the original edge {u, v}. Since |HHi ∩Xē| is finite, we eventually obtain a
set X ′ in which one of the remaining cases applies to u′. Furthermore, since
the nodes on the path of {u, v} cannot be contained in a path for another
edge incident to HHi , we can move all such edges and obtain an X ′ in which
Case 2b does not appear anymore.

3. |N(u′) ∩X| = 3: This case may appear. Let {v,w1, w2} = N(u′) ∩X. Due to
the claw-freeness of D(H), w1 and w2 induce an edge {w1, w2} in D(H). Since
u′ ∈ HHi , it holds that w1, w2 6∈ HHi .

4. |N(u′) ∩X| ≥ 4: This case cannot appear. The node v already induces an edge
together with u. Therefore, it has no edges with the nodes N(u′)∩X. To achieve
the claw-freeness of D(H), the nodes X ∩N(u′) \N(v) needed to induce a clique.
However, the maximum multiplicity of a node in D(H)[X] is one.

We see that X can be transformed, such that only Case 3 occurs. Assume that this
has been done.

In D(H)[X], we have at least y edges incident to HHi and between 1 and y − 1
edges not incident to a node from HHi . Since each of the former has a neighbor
u′ ∈ HHi as in Case 3 above, there exists an edge {w1, w2} of the latter set, such that
there are two distinct induced edges {u1, v1} and {u2, v2} with u1, u2 ∈ HHi and nodes
u′1, u

′
2 ∈ HHi \X with {w1, w2} ⊆ N(u′1)∩N(u′2). Since w1 and w2 both have multiplicity

2 to HHi , u′1 and u′2 are the only neighbors of {w1, w2} in HHi . See Figure 4.12(d) for
an example. For X3

e := {u1, v1, u2, v2, w1, w2}, we then have |(X3
e ∪N(X3

e )) ∩HHi | = 4
and the nodes X3

ē := HHi \ (X3
e ∪N(X3

e )) are an independent set of D(H) of cardinality
C − 4. Consequently, the set X3 = X3

e ∪ X3
ē has cardinality C + 2 and induces 3

edges in D(H). Given that no Minimum Strong Attack of cardinality C + 1 exists (see
Lemma 4.3.15), it is a Minimum Strong Attack.
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Lemma 4.3.17 shows that for small k, the number of edges induced by a Minimum
Strong Attack is actually independent of the parameter C. It seems possible, that this
value is generally only depending on k. However, a corresponding proof has not yet
been found. For the moment, we can now efficiently determine the LiSS-stability of
head topologies with k ≤ 4.

Corollary 4.3.18
The LiSS-Stability Decision Problem for head topologies H ∈ T(Ck,C, k) with k ≤ 4
can be solved in time in O(C).

Proof. First, we check for the properties listed in Corollary 4.3.2. With a tree traversal,
this is possible time O(Ck2). Since k = O(1), we have O(Ck2) = O(C).

Then, we verify adherence to the Stability Requirements and use Lemma 4.3.17 to
determine whether a Mininmum Strong Attack exists. Both checks can be made by
evaluating certain constant-size neighborhoods for each v ∈ V in D(H). In particular,
let N(v,≤ 3) be the nodes with a path of length at most 3 to v in D(H). With k = O(1),
we have ∀v ∈ V : mD(H)(v) = 2(k − 1) = O(1) and ∀v ∈ V : |N(v,≤ 3)| = O(1). For
each v ∈ V , we check D(H)[N(v,≤ 3)] for claw-freeness, the necessary multiplicities
between the nodes N(v), and whether there is a combination of 3 edges as induced by
the set X3

e in the proof of Lemma 4.3.17. Since |V | = Ck = O(C), the whole process
needs O(C) time.

With these results, the remaining head topologies for which we cannot yet efficiently
decide their LiSS-stability are head topologies with k ≥ 5, that have the properties
given in Corollary 4.3.2, satisfy the Stability Requirements, but are not line graphs.

To solve the LiSS-Stability Decision Problem on these topologies, we currently have
to retreat to an exhaustive search for Strong Attacks. However, the search space can be
restricted to Minimum Strong Attacks. This allows to use the results of Lemma 4.3.15
and Corollary 4.3.14 to heavily confine the parameters of such a search (e.g., attack
cardinality, multiplicity of nodes in the induced subgraph, number of attacked stripes).

4.4. Complexity of the LiSS-Stability Decision Problem

In the preceding sections, we have obtained both a characterization of the optimally
LiSS-stable topologies in T(n,C, k) and quite a number of efficiently checkable, necessary
or sufficient conditions on these topologies. Now, we investigate whether the general
LiSS-Stabiliy Decision Problem can be solved efficiently, too. We show that this would
imply P = NP.

To prove this results, we first introduce the decision version of another NP-complete
problem ([GJ79] problem ‘[GT20]’).

Definition 4.4.1 Independent Set Problem
Given a graph G = (V,E) and a number t ∈ [ |V | ], decide whether there exists
X ⊆ V such that |X| = t and ∀u, v ∈ X : {u, v} 6∈ E.
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The Independent Set Problem is trivial for t = 1: since each set {v} with v ∈ V does
not induce an edge in G, the solution is yes if and only if |V | 6= ∅. Hence, the problem
clearly remains NP-complete when restricted to instances with t > 1.

The following result was first shown by Andreas Brieg in [Bri08] and is published in
[BBG+09].

Theorem 4.4.2
The LiSS-Stability Decision Problem is coNP-complete.

Proof. To prove coNP-completeness of the LiSS-Stability Decision Problem, it is
sufficient to prove NP-completeness for its inverse problem:

Definition 4.4.3 LiSS-Instability Decision Problem
Given a topology T ∈ T(n,C, k), decide whether there is a Strong Attack X ⊆ V on
T or not.

Due to Theorem 4.1.9, T is optimally LiSS-stable if and only if there is no Strong
Attack on T . Hence, both problems are indeed inverse.

The LiSS-Instability Decision Problem is in NP, since we can validate a guessed

attack X ⊆ V by checking whether aT (X) >
∑|X|
i=1 δ

C,k
i . The latter can be computed

in time O(kn) by traversing all trees. To show NP-completeness, we give a polynomial-
time reduction from the Independent Set Problem.

Let (G = (K,A), t) be an instance of the Independent Set Problem with t > 1 and
let nG := |K| > 1. W.l.o.g. assume K = [nG]. From (G, t), we construct a topology
T ∈ T(n,C, k) with

n := (t− 1)(2(nG − 1)(4nG(nG − 1)− 1) + 1), (4.73)

C := t− 1, (4.74)

k := 2nG(nG − 1). (4.75)

In particular, for each tupel (u, v) with u ∈ V, v ∈ V \ {u}, we can define a tree index
function f as

f(u, v) :=

{
2((u− 1)(nG − 1) + v) , if v < u

2((u− 1)(nG − 1) + v − 1) , otherwise.
(4.76)

Its definition guarantees, that for each such tupel (u, v) there are two unique stripes
Tf(u,v) and Tf(u,v)+1 in T . The node set V = [n] of T is partitioned into the sets

K = [nG] (4.77)

HT = [nG + 1, nG + Ck] (4.78)

D1
e = [nG + Ck + 1, nG + Ck + k ] (4.79)

D2
e = [nG + Ck + k + 1, nG + Ck + k +

( n
C
− 2k − 2

)
] (4.80)

Do = V \K \HT \D1
e \D2

e . (4.81)
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Since nG ≥ 2 and t ≥ 2, none of these sets is empty. Note, that the nodes K will not
be used as heads. As a general rule, the nodes D1

e ∪D2
e ∪Do will forward under no

circumstances and a head h ∈ HTi is childless in all stripes Tj with j 6= i.
The head topology H of T is set to be a Cluster Topology in T(Ck,C, k) (see Defini-

tion 4.1.6). Consequently, there are C clusters of heads HT (1), . . . , HT (C), each contain-

ing exactly one head of each stripe, i.e., for i ∈ [C], j ∈ [k] the set H
T (i)
j := HT (i) ∩HTj

has cardinality one.
In the construction of T , we ensure that for each head cluster r ∈ C and each node

u ∈ K, there is at least one v ∈ K \ {u}, such that in Tf(u,v) and Tf(u,v)+1, the node u

is a child of a head from HT (r). This is always possible, since |K \ {u}| = nG − 1 and
C = t− 1 with t ≤ nG.

For each tupel (u, v) with u ∈ K and v ∈ K \ {u}, the layout of Tf(u,v) and Tf(u,v)+1

depends on whether {u, v} ∈ A or not. Figure 4.13 visualizes the trees built for both
cases. For i ∈ {0, 1}, let hi be the first (and only) head on the s→ u path in Tf(u,v)+i

and let HH(q) be its cluster.
If {u, v} ∈ A, then we set

childTf(u,v)+i(hi) := {u} ∪D1
e ∪D2

e , (4.82)

childTf(u,v)+i(u) := {v} and (4.83)

childTf(u,v)+i(v) := HH(q) \ {hi}. (4.84)

Alternatively, with a node d ∈ D1
e , we set

childTf(u,v)+i(hi) := {u, v} ∪D2
e , (4.85)

childTf(u,v)+i(u) := HH(q) \ {hi} ∪ {d} and (4.86)

childTf(u,v)+i(v) := D1
e \ {d}. (4.87)

In both cases, it holds that

|succTf(u,v)+i(hi)| = |D
2
e |+|D1

e |+|HH(q)|+|{u, v}| = n

C
−2k−2+k+k+2 =

n

C
, (4.88)

as well as
|succTf(u,v)+i(u)| = k + 1 and |succTf(u,v)+i(v)| = k. (4.89)

The (C − 1)
(
n
C − 1

)
nodes V \HTf(u,v)+i \H

T (q) \ {u, v} \D1
e \D2

e are positioned as

children to the C − 1 remaining heads HTf(u,v)+i \ {hi} of stripe Tf(u,v)+i. In particular,

it is ensured that ∀hj ∈ HTf(u,v)+i : |succTf(u,v)+i(hj)| =
n
C holds and that the clustered

head topology H is obtained.
The resulting topology T has O(n4

G) peers and O(n6
G) edges. The transformation

from G to T consists of a successor assignment satisfying the aforementioned constraints
and is computable in time O(n6

G).
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s

hi· · · · · ·

u

v

HT (q) \ {hi}

D1
e ∪D2

e

(a) Scheme of Tf(u,v)+i if {u, v} ∈ A
(

with{hi} = H
T (q)
f(u,v)+i

)
.

s

hi· · · · · ·

u v

{d} ∪HT (q) \ {hi}

D2
e

D1
e \ {d}

(b) Scheme of Tf(u,v)+i if {u, v} 6∈ A
(

with{hi} = H
T (q)
f(u,v)+i

)
.

Figure 4.13.: A tree Tf(u,v)+i in the proof of Theorem 4.4.2 (i ∈ {0, 1}).
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The node set partition influences the value aT (v) =
∑k
i=1 |succTi (v)| for each v ∈ V :

• v ∈ D1
e ∪D2

e ∪Do: Node v appears only as leaf in T . By assumption, we have
1 < t ≤ nG and nG ≥ 2. Hence, we obtain

aT (v) = k < 2(nG − 1)(4nG(nG − 1)− 1) + 1− 2((nG − 1)− 1) + k − 1 (4.90)

=
n

C
− 2(C − 1) + k − 1 = δC,kCk . (4.91)

• v ∈ K: Node v has k + 1 successors in each stripe Tf(v,u)+i for i ∈ {0, 1} and
u ∈ K \ {v}, another k successors in each stripe Tf(u,v)+i, and no successors
besides itself in the remaining stripes. Since k = 2nG(nG − 1), this adds up to

aT (v) = 2(nG − 1)(k + 1) + 2(nG − 1)k + k − 4(nG − 1) (4.92)

= 2(nG − 1)(4nG(nG − 1)− 1) + k (4.93)

= 2(nG − 1)(4nG(nG − 1)− 1) + 1 + k − 1 (4.94)

=
n

C
+ k − 1 = δC,k1 . (4.95)

• v ∈ HT : There is exactly one i ∈ [k] with v ∈ HTi . Head v has |succTi (v)| = n
C

and ∀j ∈ [k] \ {i} : |succTj (v)| = |{v}| = 1. Hence, it holds that aT (v) = δC,k1 .

Topology T has the following property.

Claim 4.4.4
There is a Strong Attack X ⊆ V on T if and only if there is an independent set of
cardinality t in G.

Proof. “If”: Assume G = (K,A) has an independent set I ⊆ K with |I| = t = C + 1.
Due to the construction of T , for each two nodes u, v ∈ K with {u, v} 6∈ A, it holds that

∀i ∈ [k] : succTi (u) ∩ succTi (v) = ∅. Since the sequence (δC,ki )1≤i≤Ck is non-increasing

and δC,kC+1 = δC,k1 − 2, we obtain

aT (I) =

k∑
i=1

∑
v∈I
|succTi (v)| =

∑
v∈I

aT (v) = (C + 1)δC,k1 >

C+1∑
i=1

δC,ki . (4.96)

Consequently, I is a Strong Attack on T .
“Only-If”: Assume G does not have an independent set of cardinality t. To rule out

the existence of any Strong Attack on T , it is sufficient to show the inexistence of a
Minimum Strong Attack. Due to Lemma 4.1.11 and Inequality 4.91, such a Minimum
Strong Attack X must have X ⊆ HT ∪K. Distinguish the following cases:

1. X ⊆ HT : Topology T adheres to the rules Not-Too-Many-Successors, Head
Rule 1, Head Rule 2 and Heads-Are-Optimally-Stable from Section 4.2. Hence,
Lemma 4.2.2 rules out the existence of such Strong Attacks.

89



4. LiSS-Stability and Topology Construction Rules

2. X ⊆ K: It holds that ∀v ∈ V : aT (v) ≤ δC,k1 = δC,kC . Hence, there is no Strong
Attack X with |X| ≤ C = t− 1, since it follows that

∀X ⊆ V, |X| ≤ C : aT (X) ≤
∑
v∈X

aT (v) ≤
|X|∑
i=1

δC,ki . (4.97)

Furthermore, since G does not have an independent set of cardinality t, every set
X ⊆ K with |X| > C contains nodes u, v ∈ K with {u, v} ∈ A. For i ∈ {0, 1}, we
then have |succTf(u,v)+i(u)∩succTf(u,v)+i(v)| = k = |succTf(v,u)+i(u)∩succTf(v,u)+i(v)|.

Since 4k = 8nG(nG − 1) > 2(nG − 1) > 2(t− 1)− 2 = 2(C − 1), this leads to

aT (X)− aT (X \ {u}) ≤ aT (u)− 4k = δC,k1 − 4k < δC,kCk . (4.98)

However, then Lemma 4.1.11 implies that X is not a Minimum Strong Attack.

3. X ∩HT 6= ∅ ∧X ∩K 6= ∅: As seen in the last case, if X is a Minimum Strong
Attack, it must have |X ∩K| ≤ C.

For each head cluster HT (q) with q ∈ [C], each u ∈ X ∩K, and each i ∈ {0, 1},
the construction of T guarantees that there is at least one node v ∈ K \ {u}
such that there is a head hi ∈ HT (q) with u ∈ childTf(u,v)+i(hi). Due to the head

clustering, it also holds that HT (q) \ {hi} ⊆ succTf(u,v)+i(u). Additionally, there is
no stripe in T in which the successor set of u contains elements from the successor
sets of more than one head cluster. Consequently, for u ∈ X ∩K, we can write

k∑
i=1

|succTi (u) ∩ succTi (X ∩HT )| =
k∑
i=1

∑
q∈[C]

|succTi (u) ∩ succTi (X ∩HT (q))|

(4.99)

≥
∑
q∈[C]

2|X ∩HT (q)| (4.100)

≥ 2|X ∩HT | = 2|X \K|. (4.101)

This leads to

aT (X)− aT (X \ {u}) ≤ aT (u)− 2|X \K| (4.102)

≤ δC,k1 − 2 max(1, |X| − C + 1) (4.103)

< δC,k1 − 2

⌊
|X| − 1

C

⌋
= δC,k|X| . (4.104)

Again, Lemma 4.1.11 shows that X is not a Minimum Strong Attack.

Since none of the three possible cases permits the existence of a Minimum Strong
Attack, no Strong Attack can exist on T .
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Claim 4.4.4 confirms that we have shown a polynomial-time reduction from Maximum
Independent Set to the LiSS-Instability Decision Problem. Since the latter is in NP,
it must be NP-complete. Consequently, the inverse LiSS-Stability Decision Problem is
coNP-complete.

We see, that the existence of a polynomial-time algorithm for the LiSS-Stability Decision
Problem would induce that P = coNP and P = NP. Currently, this is considered to
be highly unlikely.

However, the topology management of a peer-to-peer live streaming system must be
able to efficiently decide about the LiSS-stability of its maintained topology. Thus, it
is forced to build topologies for which this is possible. With the Cluster Topologies
of Section 4.1.3 and the Rule-Based Topologies of Section 4.2, we identified two large
subsets of the optimally LiSS-stable topologies for which membership can be checked
in polynomial time. The distributed implementation of these topologies will be the
topic of Section 4.5

A question still unaddressed by the proof of Theorem 4.4.2, is the complexity of the
LiSS-Stability Decision Problem for head topologies. Here, in Section 4.3, we were
able to identify a large number of head topologies for which this problem is solvable
in polynomial-time. However, the problem’s complexity remains unknown on head
topologies H with k ≥ 5 that have the properties listed in Corollary 4.3.2, adhere to
the Stability Requirements, but are not line graphs.

We have seen, that the LiSS-Stability Decision Problem for such a head topology
H ∈ T(Ck,C, k) corresponds to deciding whether there is no induced subgraph of D(H)
that has Cx+ y (x ∈ [0, k − 1], y ∈ [C]) nodes but less than Cx(x − 1) + 2xy edges.
Finding such a subgraph was shown to be NP-complete on general graphs, cubic and
planar graphs [Yan78]. Furthermore, the similar problem asking for the Maximum
Induced Matching in a claw-free graph is also NP-complete [KR03].

However, the studied multigraphs are highly structured, so that a general solvability
in polynomial-time does not seem implausible. This impression is supported by the
progress we already made in Section 4.3. A promising starting point for further results
seems to be the search for a generalization of Lemma 4.3.17.

4.5. Heuristics for a Distributed Implemention of
Optimally LiSS-Stable Topologies

A topic we have yet given only little attention, is how optimally LiSS-stable topologies
can be built in peer-to-peer systems without global coordination. This is quite an
important aspect, since the presence of a central topology-coordinating entity with
its inherently limited computing and communication resources would also limit the
maximum number of peers in the system. However, overcoming such limitations is one
of the main motivations to introduce peer-to-peer based streaming system.

Consequently, we now sketch two possible approaches to implement optimally LiSS-
stable topologies using distributed topology management mechanisms. For reasons of
space and topical focus, we will not give an exhaustive description but restrict to the
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presentation of key ideas. Details of a (manipulation-resistant) implementation are
given in [BFGS09a, BSS09, Fis12]. Note that these approaches are merely heuristics
and cannot guarantee the formation of optimally LiSS-stable topologies. In particular,
depending on the bandwidth resources of the participating peers, there are scenarios in
which this is generally impossible.

Tree Balancing A basic building block of both heuristics is a mechanism to balance
individual stripe trees. To gather the necessary information, each node v ∈ V in each
stripe i ∈ [k] has to continuously report the value |succTi (v)| to its parent parentTi (v).
The latter accumulates these numbers to calculate its own successor number. Based
on this information, each peer can calculate the average successor number among its
children and initiate node movements between the successor sets of children deviating
from it.

Cluster Topologies Introducing two additional mechanisms, we can now aim at
forming Cluster Topologies. For this, the source and the bootstrapping server act as if
they would manage C peer-disjoint peer-to-peer live streaming systems distributing
the same stream. The node sets of these systems are V1, . . . , VC . Based on successor
number information obtained from the source, the bootstrapping server then distributes
joining nodes to the system with the smallest node set. Assuming an equal node
departure behaviour in each of the sets V1, . . . , VC , this leads to approximately balanced
cardinalities.

Furthermore, based on its current number of successors in each stripe, each node
chooses a favorite stripe. Then, it constantly strives to hand over successors in the
remaining stripes to other nodes. Measurements in [BSS09] confirm, that this technique
leaves only a small number of nodes (4 − 10%) forwarding in more than one stripe.
Furthermore, these nodes are restricted to a very small number of successors.

Applying both techniques together leads to topology properties that are close to the
definition of Cluster Topologies.

However, Cluster Topologies enforce heavy restrictions on the possible successor rela-
tionships in the peer-to-peer streaming system. In that, they make it unnecessarily
difficult to properly exploit the bandwidth resources of all participating peers. Ad-
ditionally, we will see in Chapter 5, that they are inherently unstable regarding the
LoSS-damage measure. Hence, it is more desirable to aim at constructing the less
restrictive rule-based topologies from Section 4.2.

Rule-Based Topologies Once again, a small set of mechanisms suffices to approximate
the respective rules. The most difficult problem is posed by implementing the Strictly-
Not-Too-Many-Successors rule. Of course, this could be done by publicly announcing
actual successor number limits towards the leafs. However, such an approach reveals
important topology information and allows nodes to estimate their influence on the
whole system.
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A possible indirect solution, adopts the technique of ‘favorite stripes’ we already
applied for Cluster Topologies. The measurements in [BSS09] show, that the important
nodes near the source will then forward in only one stripe. In combination with the
aforementioned stripe tree balancing, this leads to a balanced division of the successor
number of each parent (reduced by one) among its children. Assuming n� Ck and
that heads have sufficient bandwidth resources to support at least 2 children, it is
possible to approximate the required successor limit for heads and effectively realize
them for non-heads.

The implementation of the Head Rule 1, Head Rule 2 and the Heads-Are-Optimally-
Stable rule is simplified by the facts, that all heads are, in some stripe, children of the
source and that their number is limited to Ck. Therefore, it is possible to burden these
rules’ coordination on the source without creating scalability issues. Here, the necessary
information about the head topology can be obtained by sending, in each stripe i and
for each head h ∈ HTi , a unique label along with the stripe data. The received labels
are collected from the heads and document their supply relationships [GFS11]. Since
successor number information is already available via the tree balancing mechanism,
the source can then initiate the necessary rearrangements of the heads’ dependencies
to satisfy the head-related rules.

4.6. Summary

In this chapter, we studied distribution topologies minimizing, for each possible cardi-
nality of attacks, the maximum LiSS-damage that can be dealt to them.

In Subsection 4.1.1, these topologies were named optimally LiSS-stable topologies.
After motivating our approach, we introduced formal specifications of the studied
problems. The Optimally LiSS-stable Topology Formation Problem consists in finding
an optimally LiSS-stable topology from a given class T(n,C, k). In the LiSS-Stability
Decision Problem, we want to determine whether a given topology T ∈ T(n,C, k) is
optimally LiSS-stable. In the course of this chapter, we saw that both are of very
different computational complexity if P 6= NP.

In the following Subsections 4.1.2 and 4.1.3, we reviewed results of [BSS09]. First,

we introduced the damage sequence (δC,ki )1≤i≤Ck. Then, we showed that there is a
simple greedy polynomial-time algorithm that, when run on a topology T ∈ T(n,C, k)

and a number x ∈ [n], returns an attack X with |X| = x and aT (X) ≥
∑x
i=1 δ

C,k
i .

This observation was complemented by the identification of the Cluster Topolo-
gies. Every topology T from this non-empty subclass of T(n,C, k) has the property

∀X ⊆ V : aT (X) ≤
∑|X|
i=1 δ

C,k
i . With this result, we both obtained a damage-based

characterization of optimally LiSS-stable topologies and found a first class of topologies
that indeed are optimally LiSS-stable. Membership in the class of Cluster Topologies
is checkable in polynomial time.

Based on the obtained characterization, we then identified necessary properties of
optimally LiSS-stable topologies in Subsection 4.1.4. They were used in Section 4.2 to
state a set of polynomial-time checkable rules that define a new, less restrictive subclass
of optimally LiSS-stable topologies.
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Given a topology T ∈ T(n,C, k), one of these rules is concerned with the head
topology H of T . The head topology is obtained from T by removing the nodes V \HT
and shortcutting all broken paths between the remaining nodes. In particular, the rule
demands that H is itself an optimally LiSS-stable topology in T(Ck,C, k). Due to this
reason, we specifically investigated the LiSS-stability of head topologies in Section 4.3.

For this, we first transformed the existing characterization of LiSS-stability into a
characterization using dependency graphs. Then, we led back the LiSS-stability of
head topologies with unconnected dependency graphs to that of head topologies with
connected dependency graphs. We identified the necessary Stability Requirements and
found the Line Graph Criterion, listing sufficient conditions for optimally LiSS-stable
head topologies. Additionally, we analyzed the properties of Minimum Strong Attacks
on head topologies. This led to the determination of further optimally LiSS-stable
head topologies and allows to restrict the search space when an exhaustive search
for Minimum Strong Attacks should be necessary. The results greatly increased the
number of head topologies that are available in the construction of ruled-based optimally
LiSS-stable distribution topologies.

Having not yet been able to efficiently identify all optimally LiSS-stable topologies
in a class T(n,C, k), in Section 4.4 we investigated the complexity of the LiSS-Stability
Decision Problem. Here, we presented a proof that this problem is coNP-complete.
When the input is restricted to head topologies, the complexity remained unknown.
However, the class of head topologies for which Section 4.3 did not yield a way to solve
the problem in P is characterized by quite specific dependency graphs. This fact could
be the base for future results.

If P 6= NP, we saw that we have to be content with the identification of as large as
possible subclasses of the optimally LiSS-stable topologies for which membership can
be checked in polynomial time.

Possible heuristics to construct topologies from the identified subclasses using a
distributed topology management system were briefly sketched in Section 4.5.

The results of the Sections 4.1.1–4.4 are published in [BBG+09, GFS11]. Furthermore,
in [FGKS11], the author adapted them to approximate optimally LiSS-stable topologies
in environments where peers may decide to receive only a subset of the available stripes.
This is not allowed in the model this thesis is based on, but is possible in peer-to-peer-
based IPTV systems, where the source is distributing multiple streams.

When studying the Cluster Topologies and the rule-based topologies identified in
this chapter, we see that none of them impose particularly high bandwidth demands
on the individual participating peers.

In fact, the requirements on the capacities of peers are of a global nature. In
particular, to form Cluster Topologies from a non-empty class T(n, c, k) with c(s) = Ck,
the requirements on the peer capacities stem from the necessity to form Ck inner-node-
disjoint trees. This means that there must be a partition V1, . . . , VCk of V , such that it
holds that ∀i ∈ [Ck] :

∑
v∈Vi c(v) ≥ n− 1.

The requirements to form rule-based topologies in T(n, c, k) are even less restrictive.
Here, no such strict node partition is necessary and non-heads may forward in more
than one stripe. However, it must be possible to adhere to the Strictly-Not-Too-Many-
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4.6. Summary

Successors rule which upper-bounds the successor number of non-heads to δC,kCk . As we
observed in Equation (4.43), this requires a certain minimum bandwidth capacity of
head nodes.

Summarizing, we can state that both identified classes of optimally LiSS-stable
topologies are applicable in a wide range of real-world situations. Especially the rule-
based topologies are attractive, since they provide great flexibility considering the
connections and successors of non-heads. Additionally, a high number of possible head
topologies is available. Furthermore, Section 5.4 will show that the huge similarities
between the successor sets of the heads of Cluster Topologies render them highly
vulnerable when evaluating the LoSS-damage of attacks. Since the rule-based topologies
do not depend on a node clustering, they are more compatible with the requirements on
topologies minimizing maximum LoSS-damage. The identification of such requirements
is the topic of Chapter 5.
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5. LoSS-Stability, Forward-Stability
and Intersections of Successor Sets

After the successful identification of construction principles for optimally LiSS-stable
topologies in Chapter 4, we will now shift our focus to study topologies that minimize,
for all possible attack sizes and parameters, the maximum possible damage of an attack
when using the LoSS-damage measure.

In a first step, in Section 5.1 we analyze basic properties that such topologies have
to exhibit. Then we show in Section 5.2, that the LoSS-damage function can be
decomposed into two superimposed types of damage, one of which – the forward-
damage – dominates the whole function in most relevant cases. For reasons of a
simplified analysis, in Section 5.3, we then resort to the study of topologies minimizing
maximum forward-damage. These topologies are called forward-stable. Again, we
identify basic necessary properties of such topologies (Subsection 5.3.1). This enables
us to examine the stability of topologies adhering to these properties by using a matrix
representation of their heads’ forward successor sets (Subsection 5.3.2). Studying these
representations allows to identify strong connections between forward-stable topologies
and Design resp. Coding Theory. The latter are the topic of Subsection 5.3.3. The
results cumulate in Subsection 5.3.4, where we will see that constructing forward-stable
topologies involves finding solutions for long-standing open problems from Design and
Coding Theory. Section 5.4 summarizes the results of the whole chapter. Furthermore,
it lists unresolved research questions and recommends next steps for the research on
LoSS- and forward-stable topologies.

5.1. The Problem of Finding Optimally LoSS-Stable
Topologies

Let us at first review the definition of the LoSS-damage measure (see Section 3.1
for a thorough introduction). For a topology T ∈ T(n,C, k), a set of nodes X ⊆ V
and node v ∈ V , the function incX(v) = |{Ti ∈ T | v 6∈ succi(X)}| counts the
number of s → v paths that would remain in T after the removal of X. Given a
threshold z ∈ [k], we then defined the Lost Service Set under Multiple Description
Coding LMDC

X,z = {v ∈ V | incX(v) ≤ k − z} as the set of nodes that have lost at least

z paths. Given X and z, the cardinality of LMDC
X,z defines the LoSS-damage function

bT (X, z) := |LMDC
X,z |.

In Section 3.2.4, we have already studied the complexity and approximability of the
LoSS problem, i.e., given T , z and t, find an attack X of minimum cardinality such
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5. LoSS-Stability, Forward-Stability and Intersections of Successor Sets

that LoSS-damage of bT (X, z) ≥ t is achieved. Now, we take an opposite position.
We aim at finding topologies minimizing the maximum LoSS-damage that an attacker
with complete topology knowledge but limited attack resources is able to achieve. For
a justification of this worst-case approach see Section 4.1.1.

Similar to Definition 4.1.1, we define the concept of an optimally LoSS-stable topology.

Definition 5.1.1 Optimally LoSS-stable Topology
For n,C, k ∈ N with Ck ≤ n, a topology T ∈ T(n,C, k) is called optimally LoSS-
stable, if it satisfies

∀x ∈ [n],∀z ∈ [k],∀C ∈ T(n,C, k) : max
X⊆V,|X|=x

bT (X, z) ≤ max
X⊆V,|X|=x

bC(X, z).

It is not hard to see that the optimally LoSS-stable topologies are equivalently described
by a seemingly weaker condition.

Corollary 5.1.2
A topology T ∈ T(n,C, k) is optimally LoSS-stable if and only if it holds that

∀x ∈ [Ck],∀z ∈ [k],∀C ∈ T(n,C, k) : max
X⊆V,|X|=x

bT (X, z) ≤ max
X⊆V,|X|=x

bC(X, z).

Proof. “Only-If”: This follows from Definition 5.1.1.
“If”: For x ∈ [Ck, n], it holds that

∀C ∈ T(n,C, k),∀z ∈ [k] : max
X⊆V,|X|=x

bT (X, z) = n, (5.1)

since it is possible to choose an x-node attack X with HT ⊆ X, resulting in the
disturbance of all source-peer paths of C. This also implies a LoSS-damage of all
peers. Hence, restricting the definition to the requirements defined by x ∈ [Ck] will not
exclude an optimally LoSS-stable topology.

Furthermore, we formalize the problem of finding optimally LoSS-stable topologies.

Definition 5.1.3 Optimally LoSS-stable Topology Formation Problem
Given n,C, k ∈ N with n ≥ Ck, the Optimally LoSS-stable Topology Formation
Problem consists in finding an optimally LoSS-stable topology T ∈ T(n,C, k) or
determining that none exist.

The existence of an optimally LoSS-stable topology for every set of parameters n,C, k
is far from clear. If no optimally LoSS-stable topology exists, topology optimiziation
should try to achieve optimality at least for small values of the attack parameters
x and z, since these will be the combinations most frequently observed in practical
situations.

Although optimally LoSS-stable topologies will have specific demands not seen for
LiSS-stable topologies, optimizing for LiSS-stability is a way to upper-bound possible
LoSS-damage.
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Lemma 5.1.4
For a topology T ∈ T(n,C, k) and z ∈ [k], LiSS- and LoSS-damage of an attack
X ⊆ V have the following relation:

aT (X) ≥ z · bT (X, z) + (k − z) · |X|.

Proof. By definition, each of the bT (X, z) nodes in LMDC
X,z must have lost at least z

paths from the source, each of which is counted also as LiSS-damage. Furthermore,
the attacked nodes X have lost all k of their paths. Since X ⊆ LMDC

X,z , we may only
add k − z for each one.

However, optimally LiSS-stable topologies are not necessarily optimally LoSS-stable.
Indeed, by enforcing high similarities between the nodes’ successor sets, the optimally
LiSS-stable Cluster Topologies of Section 4.1.3 can suffer very strong LoSS-attacks
when compared with the forward-stable topologies to be introduced in Section 5.3.

From the definition of optimally LoSS-stable topologies, we can deduce a number
of necessary conditions, which, all but the second, already proved to be necessary for
optimal LiSS-stability.

Lemma 5.1.5
For a topology T ∈ T(n,C, k), the following conditions are necessary to be optimally
LoSS-stable:

1. ∀I ⊆ [k] :
∣∣⋃

i∈I H
T
i

∣∣ = C · |I|

2. ∀v ∈ V,∀i, j ∈ [k], i 6= j : succTi (v) ∩ succTj (v) = {v}

3. ∀v ∈ V : aT (v) ≤
⌈
n
C

⌉
+ k − 1 = δC,k1

Proof. We compare T with a Cluster Topology C ∈ T(n,C, k) of depth two (cmp.
Section 4.1.3). In particular, we show that the lack of each of the conditions given
above allows attacks on T that achieve more LoSS-damage than is achievable by
corresponding attacks on C.

The Cluster Topology C was shown to exist in T(n,C, k), is optimally LiSS-stable,
has |HC | = Ck, C heads per stripe, and satisfies ∀i ∈ [k],∀h ∈ HCi : |succi(h)| ≤

⌈
n
C

⌉
.

Each v ∈ V \HC has |succ(v)| = k. See Figure 5.1 for an example of such a topology.

1. Assume ∃I ⊆ [k] :
∣∣⋃

i∈I H
T
i

∣∣ 6= C · |I|. W.l.o.g. assume
∣∣⋃

i∈I H
T
i

∣∣ < C · |I|
(otherwise set I := [k] \ I since, due to limited source capacity, there are at
most Ck heads in all stripes). For z := |I|, an attack X :=

⋃
i∈I H

T
i achieves

bT (X, z) = n.

We show that there is no attack of less than Cz nodes achieving this amount of
damage on C. Since C is optimally LiSS-stable, an attack Y with |Y | ≤ Cz − 1
nodes cannot reach LiSS-damage necessary due to Lemma 5.1.4 (we use that the
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Figure 5.1.: A Cluster Topology C ∈ T(9, 2, 3) as in the proof of Lemma 5.1.5.

definition of T(n,C, k) guarantees bn/Cc ≥ k):

aC(Y ) ≤
Cz−1∑
i=1

δC,ki = zn+ (k − z)Cz − δC,kCz (5.2)

≤ zn+ (k − z)(Cz − 2)− 1 < zn+ (k − z)(Cz − 1) (5.3)

Thus, X =
⋃
i∈I H

T
j creates more damage on T than any attack of |X| nodes on

C. This contradicts that T is optimally LoSS-stable.

2. If k = 1, every topology in T(n,C, k) has Property 2. Hence, assume k > 1 and
∃v,w ∈ V with v 6= w such that w ∈ succTi (v) ∩ succTj (v) for distinct stripes
i, j. Cluster Topology C has Property 2, so every attack with z = 2, x = 1 will
lead to a damage of 1, just disabling the attacked node itself. However, in T
we have bT ({v}, z) ≥ 2, since {v, w} ⊆ LMDC

{v},z. Consequently, T is not optimally
LoSS-stable.

3. Assume ∃v ∈ V : aT (v) >
⌈
n
C

⌉
+ k − 1. We set z := 1 and study the damage of

single-node-attacks on both topologies.

A head h ∈ HC has aC(h) ≤
⌈
n
C

⌉
+ k − 1 and a node w ∈ V \HC has aC(w) = k.

By Lemma 5.1.4, it holds that ∀w ∈ V : bC({w}, 1) ≤
⌈
n
C

⌉
.

For T , we can assume Property 2, otherwise it would be unstable. Hence, for every
node w ∈ V and two stripes i, j ∈ [k], i 6= j, we have succTi (w)∩ succTj (w) = {w}.
Since z = 1, we can write

bT ({w}, 1) =

∣∣∣∣∣∣
⋃
i∈[k]

succTi (w)

∣∣∣∣∣∣ =

∑
i∈[k]

|succTi (w)|

− (k− 1) = aT (w)− (k− 1).

(5.4)
This leads to bT ({v}, 1) >

⌈
n
C

⌉
, so attack {v} generates more damage on T than

any sinlge-node attack on C. Hence, T is not optimally LoSS-stable.

Note that Property 1 does not follow from Property 3, as the topology in Figure 5.2
illustrates.
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Figure 5.2.: Example topology T ∈ T(5, 2, 2) violating Property 1 but satisfying Prop-
erty 3 of Lemma 5.1.5.

The following result indicates that the topology heads and their successor sets play a
crucial role for LoSS-stability.

Lemma 5.1.6
For each T ∈ T(n,C, k) there is C ∈ T(n,C, k) with depth 2, such that

∀X ⊆ V,∀z ∈ [k] : bC(X, z) ≤ bT (X, z).

Proof. Construct C from T by making, in each stripe i ∈ [k], each non-head v a child
of its head predTi (v) ∩HTi from T . In particular, set

∀v ∈ V,∀i ∈ [k] : parentCi (v) :=

{
{s} , if v ∈ HTi
predTi (v) ∩HTi , otherwise.

(5.5)

For each node v ∈ V , there is an s→ v path in each stripe of C, since T ∈ T(n,C, k) and
thus ∀i ∈ [k] : succT (HTi ) = V . It holds that ∀i ∈ [k],∀X ⊆ V : succCi (X) ⊆ succTi (X),
leading to ∀v ∈ V : incCX(v) ≥ incTX(v) and ∀X ⊆ V,∀z ∈ [k] : bC(X, z) ≤ bT (X, z).

Applying Lemma 5.1.6 to an optimally LoSS-stable topology, we obtain the following
Corollary.

Corollary 5.1.7
If there is an optimally LoSS-stable topology T ∈ T(n,C, k), then there is one of
depth 2.

5.2. Forward-Damage and its Dominating Role

Now, we take a deeper look at the different influence factors determining the LoSS-
damage achieved by an attack X on a topology T . Since succTi (X) = succT→i (X) ∪X,
we can reformulate the definition of the Lost Service Set LMDC

X,z of an attack X ⊆ V on
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T in the following way:

LMDC
X,z = {v ∈ V | incX(v) ≤ k − z} (5.6)

=

 ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succTi (X)

 (5.7)

= X ∪

 ⋃
I⊆{1,...,k},z=|I|

⋂
i∈I

succT→i (X)

 (5.8)

We see that LoSS-damage is generated by the superimposition of two different aspects.
The damage done to the attacked nodes X themselves will be called direct damage of
the attack. All nodes from LMDC

X,z \X are successors of attacked nodes in at least z
stripes and appear in Term (5.8) in at least one intersection of X’s forward successor
sets for a z-combination I of stripes. The damage generated by this part of LMDC

X,z (not
necessarily disjoint to X) will be called forward-damage. Due to its importance in this
chapter, we will consider it as a damage function of its own:

Definition 5.2.1 Forward Damage Function
For T ∈ T(n,C, k), z ∈ [k], and X ⊆ V , we define the forward-damage function as

bfT (X, z) :=

∣∣∣∣∣∣
⋃

I⊆{1,...,k},|I|=z

⋂
i∈I

succT→i (X)

∣∣∣∣∣∣ .

Corollary 5.2.2
For every T ∈ T(n,C, k), every X ⊆ V , and every z ∈ [k], it holds that

bfT (X, z) ≤ bT (X, z) ≤ bfT (X, z) + |X|.

Proof. This follows directly from bT (X, z) = |LMDC
X,z | and Equation (5.8).

To find an attack maximizing the achievable LoSS-damage, an attacker has to increase
forward-damage and, at the same time, aim at finding an attack set with the least
intersection to the nodes suffering this forward-damage (thus he will profit from direct
damage).

However, when comparing the influence of direct damage and forward-damage of an
attack on the resulting LoSS-damage, we see that the effect of direct damage is only
limited and stands back against the impact of forward-damage.
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Theorem 5.2.3 Dominance of Forward Damage
For every T ∈ T(n,C, k), z ∈ [k], and x ∈ [n], it holds that

max
X⊆V,|X|=x

bT (X, z) ≤ max
X⊆V,|X|=x

bfT (X, z) + min(Cz − 1, x). (5.9)

Furthermore, for given C, k, x ∈ N and all z ∈ [min(k, x)], we have

lim
n→∞

min
T ∈T(n,C,k)

maxX⊆V,|X|=x bfT (X, z)

maxX⊆V,|X|=x bT (X, z)
= 1. (5.10)

Proof. Let I ⊆ [k] be the inidices of the z stripes of T with the smallest number of
heads. By Lemma A.0.3, we have

∑
i∈I |HTi | ≤

z
kCk = Cz.

If x ≥ Cz, we can choose an attack X with
⋃
i∈I H

T
i ⊆ X. Then, it will hold

that V =
⋂
i∈I succTi (X) =

⋂
i∈I succT→i (X) and bT (X, z) = bfT (X, z) = n. Hence,

maximum LoSS- and forward-damage on T can only differ for x < Cz. Applying
Corollary 5.2.2, we obtain Inequality (5.9).

Now let T be an arbitrary topology from T(n,C, k) and let values x ∈ [Ck] and
z ∈ [ min(k, x) ] be given. We show that maxX⊆V,|X|=x bT (X, z) ≥ n

Cz . For this, let I
be defined as above and let O be the set of all attacks containing exactly one head
from each of the z stripes I. We have |O| ≤

∏
i∈I |HTi | with equality if no node is head

in two of the stripes. Due to Lemma A.0.2, we must have |O| ≤ Cz. For each v ∈ V ,
the set O must contain the set

⋃
i∈I predTi (v) ∩HTi , leading to

∑
X∈O bT (X, z) ≥ n.

Hence, the average forward-damage of the attacks in O is at least n
Cz and there is

X ∈ O with |X| ≤ z and bT (X, z) ≥ n
Cz . Since a superset of X cannot generate less

damage, it also holds that maxX⊆V,|X|=x bT (X, z) ≥ n
Cz .

Due to Corollary 5.2.2 and Equation (5.9), we have

max
X⊆V,|X|=x

bT (X, z)− Cz ≤ max
X⊆V,|X|=x

bfT (X, z) ≤ max
X⊆V,|X|=x

bT (X, z). (5.11)

This leads to

1− Cz(
n
Cz

) ≤ maxX⊆V,|X|=x bfT (X, z)

maxX⊆V,|X|=x bT (X, z)
≤ 1. (5.12)

Hence, we obtain

1 = lim
n→∞

(
1− Cz(

n
Cz

)) ≤ lim
n→∞

min
T ∈T(n,C,k)

maxX⊆V,|X|=x bfT (X, z)

maxX⊆V,|X|=x bT (X, z)
≤ 1. (5.13)

We see that in real-life distribution topologies, where we have n � Ck, the LoSS
damage of optimal attacks will be dominated by forward-damage. Due to this fact,
the intersection structure of the peers’ forward successor sets – which determines
forward-damage – plays a key role for the construction of LoSS-stable distribution
topologies.
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Topologies minimizing maximum forward-damage will be called forward-stable. Their
definition builds on sets of restricted attacks.

Definition 5.2.4 The Set χ(T , t) of t-Restricted Attacks
For a topology T ∈ T(n,C, k) and t ∈ [k], the set

χ(T , t) :=X ⊆ V ∣∣∣ ∃I ⊆ [k] ∧ |I| = t ∧ ∀v ∈ X :

⋃
i∈I

succT→i (v) 6= ∅ ∨
⋃
i∈[k]

succT→i (v) = ∅


is called the set of t-restricted attacks on T .

For each X ∈ χ(T , t), there is a set I of t stripes such that each v ∈ X either has
forward successors in at least one of the stripes I, or it has no forward successors at all.
Consequently, if topology T has inner-node disjoint stripe trees, χ(T , t) is the set of
all attacks containing inner-nodes from at most t stripes and an arbitrary number of
nodes that are leaf in all stripes.

Definition 5.2.5 (t-)Forward-Stable Topology
A topology T ∈ T(n,C, k) is called t-forward-stable, if it holds that

∀x ∈ [n],∀z ∈ [k],∀C ∈ T(n,C, k) : max
X∈χ(T ,t)
|X|=x

bfT (X, z) ≤ max
X∈χ(C,t)
|X|=x

bfC(X, z).

If T is t-forward-stable for all t ∈ [k], it is called forward-stable.

Informally, a topology T ∈ T(n,C, k) is t-forward-stable, if it minimizes the maximum
possible forward damage that is achievable by t-restricted attacks (for all attack
cardinalities and thresholds z). Forward-stable topologies are t-forward-stable for all
possible values of t. The definition of χ(T , t) leads to χ(T , t) ⊆ χ(T , t+ 1) for all
t ∈ [k−1]. Furthermore, it holds that χ(T , k) = P(V ). Thus, a forward-stable topology
must – similar to a LiSS- or LoSS-stable topology – be stable against worst-case
attacks of all possible cardinalities and parameters.

Again, we define a corresponding topology formation problem.

Definition 5.2.6 (Restricted) Forward-Stable Topology Formation Problem

The (Restricted) Forward-Stable Topology Formation Problem for input parameters
n,C, k (and t) consists in finding a (t-)forward-stable topology T ∈ T(n,C, k) or
determining that none exists.

In the following, we will see that forward-stable topologies exist. When such a
solution is found and output, it will have at least nk edges. This is exponential in the
binary representation of the input variables. Hence, as with other topology formation
problems, any algorithm solving the (Restricted) Forward-Stable Topology Formation
Problem must have at least pseudopolynomial runtime.
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Motivation for the Analysis of Forward-Stable Topologies In the remaining sections
of this chapter, we will focus on studying the properties and the construction of forward-
stable topologies. By omitting, from the LoSS-damage, the damage of attacked nodes
that are not hit by forward-damage, we gain a considerably simplified analysis. In
particular, we do not have to handle the superimposition of the effects of a) the
intersection structure of the topology’s forward successor sets and b) the choice of
actual nodes these forward successor sets are associated with.

In the long term, this will allow us to identify many unstable topologies based on
simple requirements and to analyze the remaining topologies based on a compact matrix
representation. Using this representation, we can connect our problems with a large
number of results from Design and Coding Theory. In particular, we will show that the
construction of forward-stable topologies is at least as hard as solving long-standing
open problems in these areas.

5.3. Constructing Forward-Stable Topologies

The following Subsection 5.3.1 identifies basic properties of forward-stable topologies.
In particular, its results allow us to introduce a matrix representation of the heads’
successor sets in Subsection 5.3.2. Such a matrix characterizes the forward-stability of
a distribution topology and we show that it has to be a so-called Orthogonal Array or
a special Packing Array. If n ≤ Ck, the rows of these matrices can be seen as an error-
correcting code. Therefore, Subsection 5.3.3 gives a review on related coding-theoretical
results and their possible application in the study of forward-stable topologies. Finally,
Subsection 5.3.4 investigates the existence conditions of the necessary matrices and
connects the (Restricted) Forward-Stable Topology Formation Problem with open
problems in Design and Coding Theory.

5.3.1. Basic Properties of Forward-Stable Topologies

In Lemma 5.3.2, we identify necessary conditions on t-forward-stable topologies. Then,
we check whether these conditions conflict with the necessary conditions on optimally
LoSS-stable topologies. Finally, we find out that the forward-stability of topologies
adhering to the properties given in Lemma 5.3.2 depends only on the forward successor
sets of their heads.

We start with a technical corollary about small attacks on t-forward-stable topologies.

Corollary 5.3.1
A t-forward-stable topology T ∈ T(n,C, k) satisfies for all x ∈ [t]

∀z ∈ [k],∀C ∈ T(n,C, k) : max
X⊆V,|X|=x

bfT (X, z) ≤ max
X⊆V,|X|=x

bfC(X, z). (5.14)

Proof. For every topology C ∈ T(n,C, k) and every set X ⊆ V with |X| = x ≤ t, there is
a set I ⊆ [k] of cardinality at most t such that ∀v ∈ X : I∩arg maxi∈[k] |succC→i (v)| 6= ∅.

105
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Hence, χ(C, t) contains all possible attacks on x nodes from V :

∀C ∈ T(n,C, k) : {X ⊆ V | |X| = x} = {X ∈ χ(C, t) | |X| = x}. (5.15)

Since T is t-forward-stable, it especially holds that

∀z ∈ [k],∀C ∈ T(n,C, k) : max
X∈χ(T ,t),|X|=x

bfT (X, z) ≤ max
X∈χ(C,t),|X|=x

bfC(X, z). (5.16)

Due to Line (5.15), the Inequalities (5.16) and (5.14) are equivalent.

Lemma 5.3.2
A t-forward-stable topology T ∈ T(n,C, k) with t ∈ [k] has the following properties:

1. ∀v ∈ V : |{i ∈ [k] | succT→i (v) 6= ∅}| ≤ 1

2. ∀v ∈ V : |
⋃
i∈[k] succT→i (v)| ≤

⌈
n
C

⌉
Proof. Similar to the proof of Lemma 5.1.5, we compare T with a Cluster Topology
C ∈ T(n,C, k) of depth 2. In each stripe i of C, every v ∈ V \HCi has |succC→i (v)| = 0.

Due to Corollary 5.3.1, T should minimize the maximum forward-damage for attacks
of cardinality 1 and all values of z. However, if T lacks one of the properties, we
show that, for certain z, there are attacks of cardinality 1 on T that achieve more
forward-damage than any such attack can achieve on C:

1. Assume there is v ∈ V and two distinct stripes i, j, such that succT→i (v) 6= ∅
and succT→j (v) 6= ∅. Then, we must have v ∈ succT→i (v) ∩ succT→j (v). In
contrast, for all w ∈ V there is no pair i, j of distinct stripes of C such that
succC→i (w) ∩ succC→j (w) 6= ∅. We obtain maxX⊆V,|X|=1 bfT (X, 2) ≥ 1, whereas

it holds that maxY⊆V,|Y |=1 bfC(Y, 2) = 0. Hence, T is not t-forward-stable.

2. Assume that ∃v ∈ V : |
⋃
i∈[k] succT→i (v)| >

⌈
n
C

⌉
. The maximum forward-

damage of an attack with z = 1, x = 1 on a topology D ∈ T(n,C, k) equals
maxv∈V |

⋃
i∈[k] succD→i (v)|. In C, this value is

⌈
n
C

⌉
, whereas, due to v, it is

higher in T . Hence, T is not t-forward-stable.

Note, that the first property prohibits nodes forwarding or being head in multiple
stripes. We will call this the one-stripe-only property. Both properties together induce
all the properties necessary for LoSS-stable topologies stated in Lemma 5.1.5. However,
with the one-stripe-only property, the requirements for forward-stability are more strict.
Example 5.3.3 demonstrates, that this is not necessary for optimal LoSS-stability.
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(a) T ∈ T(5, 2, 2)

|X| X b(X, 1) X b(X, 2)

1 {1}, {2}, {5} 3 {1}, {2}, {3}, {4}, {5} 1
2 {1, 2}, {3, 5} 5 {1, 3} 3
3 – – {1, 2, 3}, {1, 3, 5} 4
4 – – {1, 2, 3, 5} 5

(b) Attacks of maximum LoSS-damage on T .

Figure 5.3.: Distribution topology for Example 5.3.3. Head 2 forwarding in both stripes.

Example 5.3.3 LoSS-stable Topology Without One-Stripe-Only
The maximum LoSS-damage on the topology depicted in Figure 5.3 equals that on
an optimally LoSS-stable topology T ∗ ∈ T(5, 2, 2):
z = 1: Topology T ∗ must have a stripe i with head h ∈ HT

∗

i , such that
succT

∗

i (h) ≥
⌈

5
2

⌉
= 3. Thus, since bT

∗
(X, 1) = |

⋃
j∈[k] succT

∗

j (X)|, we have

maxv∈V bT
∗
(v, 1) ≥ 3. Furthermore, attacking both heads HT

∗

i damages all 5
nodes. The LoSS-damage cannot be increased for larger attacks.
z = 2: Every non-empty attack on T ∗ will achieve a damage of at least 1 and every

attack on the 4 heads HT
∗

leads to LoSS-damage of n = 5. For attacks of size 2,
T ∗ must have an attack targeting both heads of the node in V \HT ∗ , leading to a
damage of 3. Enlarging this attack set by another head results in LoSS-damage of 4.

However, it is safe to dictate the one-stripe-only property, since, although not all
optimally LoSS-stable topologies possess this property, we can always find one adhering
to it if any optimally LoSS-stable topology exists.

Lemma 5.3.4
If there is an optimally LoSS-stable topology T ∈ T(n,C, k), then there is an
optimally LoSS-stable topology C ∈ T(n,C, k) that has all properties listed in
Lemma 5.3.2.

Proof. At first, we show this for Property 1, the one-stripe-only property. By Corollary
5.1.7, there is an optimally LoSS-stable topology C ∈ T(n,C, k) with depth 2. This
topology must have the properties of Lemma 5.1.5. Then, only the topology heads will
forward the stream and each head will forward just in the (one) stripe it is head of.
Thus, C adheres to the one-stripe-only property.

Now, Property 2 of Lemma 5.3.2 follows from the combination of the one-stripe-only
property and Property 3 of Lemma 5.1.5.

Topologies satisfying the conditions of Lemma 5.3.2 have the following property.
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(a) Topology T ∈ T(9, 2, 2)

1 2 3︸ ︷︷ ︸
2

4︸ ︷︷ ︸
1

5 6 7 8 9︸ ︷︷ ︸
7︸ ︷︷ ︸

5
(b) Stripe 1: non-empty forward successor sets

1 2 3 4 5︸ ︷︷ ︸
4︸ ︷︷ ︸

3

6 7 8︸ ︷︷ ︸
8

9︸ ︷︷ ︸
9

(c) Stripe 2: non-empty forward successor sets

Figure 5.4.: A topology adhering to the properties of Lemma 5.3.2 and the laminar
families of non-empty forward successor sets in each of its stripes.

Lemma 5.3.5
Let T ∈ T(n,C, k) have the properties given in Lemma 5.3.2. For all z ∈ [k] and
each X ⊆ V , there is Y ⊆ HT with bfT (Y, z) ≥ bfT (X, z) and |Y | = min(|X|, Cz).

Proof. Due to the one-stripe-only property, the sets Vi := {v ∈ V | succT→i (v) 6= 0} for
i ∈ [k] together with the set V0 := V \

⋃
i∈[k] Vi form a partition of V .

Furthermore, since each stripe Ti ∈ T is a tree, the forward successor set of each
node v ∈ V is is a proper subset of the forward successor set of each predecessor
predT→i (v). Hence, for each i ∈ [k], the set {succT→i (v) | v ∈ Vi} is a laminar family
of sets, i.e., for every two sets A,B from this family, A ∩B equals either A, B, or ∅.
In {succT→i (v) | v ∈ Vi}, the forward successor sets of the heads HTi are the only sets
that are not subsets of others (cmp. Figure 5.4).

Now, let X ⊆ V be an arbitrary attack on T . If |X| ≥ Cz, then all nodes can be
isolated by attacking the (at most) Cz heads of z stripes with the smallest number of
heads.

Otherwise, drop nodes with only empty forward successor sets from X, i.e., set
X := X \ V0, and let

Y ′ := {h ∈ HT | ∃i ∈ [k],∃v ∈ Vi ∩X : succT→i (v) ⊆ succT→i (h)}. (5.17)

Due to the node partition and set laminarity, it holds that |Y ′| ≤ |X|. Furthermore,
we have ∀i ∈ [k] : succT→i (X) ⊆ succT→i (Y ′) and therefore bfT (X, z) ≤ bfT (Y ′, z)
for all z ∈ [k]. No superset Y ⊆ HT with Y ′ ⊆ Y and |Y | = |X| can create less
forward-damage.

We see that the forward-stability of topologies with the properties given in Lemma 5.3.2
depends only on the forward successor sets of their heads.
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Corollary 5.3.6
Let T ∈ T(n,C, k) have the properties given in Lemma 5.3.2. For all z ∈ [k] and all
x ∈ [Ck], the value

max
X⊆V,|X|=x

bfT (X, z)

is completely determined by the forward successor sets of the heads HT .

Proof. Due to Lemma 5.3.5, there is Y ∈ arg maxX⊆V,|X|=x bfT (X, z) with Y ⊆ HT
for each z ∈ [k] and x ∈ [Ck]. Its forward-damage is determined only by the forward
successor sets of the nodes Y .

5.3.2. Head Forward Successor Sets and Orthogonal Arrays

Due to Corollary 5.3.6, all further study on forward-stable topologies can concentrate
on the structure of the multiset F := {succT→i (h) 6= ∅ | h ∈ HT , i ∈ [k]} of non-empty
forward successor sets of heads. In a topology T with the properties of Lemma 5.3.2,
each head has a non-empty forward successor set in exactly one stripe and it holds
that |F | = |HT | = Ck. Additionally, the definition of forward successor sets guarantees
that for each i ∈ [k] the set Fi := {succT→i (h) | h ∈ HTi } is a partition of V into |HTi |
sets. For the following analysis, we will use a matrix-based representation of F . For its
definition, recall that the topologies T(n,C, k) are defined on the node set V = [n].

Definition 5.3.7 Matrix MT of Forward Successor Sets of HT

Let T ∈ T(n,C, k) be given. Using a bijection σi : H
T
i → [ |HTi | ] per stripe i ∈ [k], the

matrix MT of forward successor sets of the heads HT is an n× k matrix MT = (mvi),
such that for each v ∈ V, i ∈ [k], and j ∈ HTi , it holds that

mvi = σi(j)⇔ v ∈ succT→i (j).

For v ∈ V , define MT [v] = (mv1, . . . ,mvk) as the v-th row of MT .

This matrix representation illustrates the membership relations between the elements
of V and F . The i-th entry of the v-th row of MT encodes the head supplying node v in
stripe i. Its numeric value is determined by bijection σi. See Figure 5.5 for an example.
Given the bijections σi, the multiset F can be completely recovered from MT since, due
to its definition, it holds that ∀h ∈ HT ,∀i ∈ [k] : succT→i (h) = {w ∈ V | mwi = σi(h)}.

Reusing the bijections σi from MT , we can also transform each attack X ⊆ HT into
a set σ(X) of k-dimensional vectors. In their i-th position, these vectors contain entries
from {σi(h) | h ∈ X ∩HTi } if X ∩HTi 6= ∅. Otherwise, this position contains value 0.

Definition 5.3.8 Vector Attack
Given T ∈ T(n,C, k), the matrix MT , and the corresponding bijections
σi : H

T
i → [ |HTi | ] for i ∈ [k], the vector attack σ(X) for an attack X ⊆ HT on T is

defined as

σ(X) :=
{
y ∈ ({0} ∪ N)k | ∀i ∈ [k] : ((yi = 0) ∧ (X ∩HTi = ∅)) ∨ (σ−1

i (yi) ∈ X)
}
.
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(a) Topology T ∈ T(10, 3, 3) 1 1 1 2 2 2 3 3 3 3
1 1 1 2 2 3 3 2 2 3
1 2 3 1 2 3 1 2 3 1


(b) MT T for σ1(1) = σ2(2) = σ3(10) = 1, σ1(4) = σ2(5) = σ3(8) = 2 and σ1(7) = σ2(6) = σ3(3) = 3

Figure 5.5.: A topology T with the properties of Lemma 5.3.2 and the transposed
matrix MT of the forward successor sets of HT .

We can restate our notion of forward-damage by counting certain row vectors in MT .
Using vector attacks, the forward-damage of an attack X ⊆ HT on T is equivalent to

bfT (X, z) =

∣∣∣∣∣∣
⋃

I⊆[k],|I|=z

⋂
i∈I

succT→i (X)

∣∣∣∣∣∣ (5.18)

=

∣∣∣∣∣
{
v ∈ V

∣∣∣ ∃I ⊆ [k], |I| = z : v ∈
⋂
i∈I

succT→i (X)

}∣∣∣∣∣ (5.19)

=
∣∣{v ∈ V ∣∣ ∃I ⊆ [k], |I| = z,∀i ∈ I : σ−1

i (mvi) ∈ X
}∣∣ (5.20)

=
∣∣{v ∈ V ∣∣ ∃I ⊆ [k], |I| = z,∃x ∈ σ(X),∀i ∈ I : xi = mvi

}∣∣ (5.21)

=
∣∣{v ∈ V ∣∣ ∃x ∈ σ(X) : d(M [v],x) ≤ k − z

}∣∣ , (5.22)

where d(·, ·) is the Hamming Distance between two vectors. Example 5.3.9 demonstrates
this connection between vector attacks and forward-damage.

Example 5.3.9 Vector Attacks and Forward Damage
Let X = {4, 7, 10} and Y = {1, 5, 8} be attacks on the topology T of Figure 5.5(a)
with MT and σi as given in Figure 5.5(b).

We have σ(X) = {(2, 0, 1), (3, 0, 1)} and σ(Y ) = {(1, 2, 2)}. The rows of MT must
be vectors from [ |HT1 | ] × [ |HT2 | ] × [ |HT3 | ] = [3]3. For z = 2, in [3]3 the vectors
{(2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1), (3, 3, 1)} have Hamming Distance ≤ 1 to
σ(X) and the vectors {(1, 2, 2), (2, 2, 2), (3, 2, 2), (1, 1, 2), (1, 3, 2), (1, 2, 1), (1, 2, 3)}
have a distance ≤ 1 to σ(Y ). Each v ∈ V with MT [v] in these sets suffers forward-
damage. This applies to {4, 7, 10} for X and {2, 5, 8} for Y (visualized in Figure 5.6).

110



5.3. Constructing Forward-Stable Topologies

x

y

z

0

1

2

3
2

3

2

3
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(b) Rows of MT in distance ≤ 1 from
vector attack σ(Y ).

Figure 5.6.: Illustration of Example 5.3.9. Rows of MT black dots, vector attacks
circled, neighborhood of Hamming Distance 1 snaked.

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1


(a) A transposed OA(27, 4, 3, 3) of index 1. 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 1 3 3 1 2 1 3 2 3 2 1 2 3 1


(b) A transposed indecomposable OA(18, 3, 3, 2) of index 2 [DB02].

Figure 5.7.: Examples of Orthogonal Arrays

Now we can introduce the following concept from Design Theory [HSS99, CD06].

Definition 5.3.10 Orthogonal Array
For n, k,C ∈ N and t ∈ [0, k], an n × k matrix M with entries mvi ∈ [C] is called
an Orthogonal Array OA(n, k,C, t) if in every n × t submatrix M ′ consisting of t
complete columns of M , each x ∈ [C]t appears exactly λ := n

Ct times as a row.
We say that M has strength t, C levels, k factors and index λ.

Figure 5.7(a) shows an Orthogonal Array built using the Bush construction [Bus52].
Orthogonal Arrays have the following nice property.

Corollary 5.3.11 Strength of Orthogonal Arrays
An Orthogonal Array M of strength t also has strength t− 1.
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Proof. Each n× (t− 1) submatrix M ′′ of M contains all but one column of an n× t
submatrix M ′ of M . M ′ contains each t-tuple of symbols from [C] exactly n

Ct times
as row. C of these t-tuples at a time share the same symbols in the columns of M ′′.
Thus, each (t− 1)-tuple of symbols will occur in C n

Ct = n
Ct−1 rows of M ′′.

Clearly, reusing this corollary shows that M must be of strength t′ ∈ N for all t′ ≤ t.
Furthermore, we can combine two Orthogonal Arrays to obtain an Orthogonal Array
with more rows.

Corollary 5.3.12 Concatenation of Orthogonal Arrays
Let M1 be an OA(n1, k, C, t1) and M2 be an OA(n2, k, C, t2), then

M3 =

[
M1

M2

]
is an OA(n1 + n2, k, C,min(t1, t2)).

Proof. By Corollary 5.3.11 both M1 and M2 are of strength t3 := min(t1, t2). Hence,
each (n1 + n2)× t3 submatrix of t3 columns of M3 will contain each possible vector
v ∈ [C]t3 exactly n1

Ct3 times from M1 and n2

Ct3 times from M2. Resulting in an overall
frequency of n1+n2

Ct3 .

The reverse operation of obtaining two Orthogonal Arrays M1 and M2 of strength
t by bipartitioning the rows of an Orthogonal Array M3 of strength t is known as
decomposition of Orthogonal Arrays. Since n is a multiple of Ct in every Orthogonal
Array, it is important to note that not every Orthogonal Array of index greater one
is indeed decomposable [DB02]. Figure 5.7(b) shows an example. Although this
OA(18, 3, 3, 2) is indecomposable, there actually exist OA(9, 3, 3, 2). However it is not
always the case that there is an OA(Ct, k, C, t). The problem of finding the minimum
value n, such that an OA(n, k, C, t) exists will be among the topics of Section 5.3.4.

The following lemma shows, that each Orthogonal Array of strength at least 1 satisfies
our current requirements for a use in forward-stable topologies.

Lemma 5.3.13
For every OA(n, k,C, t) M with n ≥ Ck and strength t ≥ 1, there is a topology
T ∈ T(n,C, k) with MT = M that satisfies the requirements of Lemma 5.3.2.

Proof. We construct a suitable topology T of depth 2. For the use as heads HT, we
determine the indices of Ck suitable rows of M . For this, we construct a bipartite
graph G =

(
[n] ∪̇ ([C]× [k]), E

)
. Its node set contains the n peers [n] = V of T and

head positions (i, j). A head position (i, j) corresponds with the role as i-th head in
stripe j of T . The edge set E satisfies

{v, (i, j)} ∈ E ⇔M [v]j = i. (5.23)

For each u ∈ [n] ∪̇ ([C] × [k]), define N(u) := {w ∈ [n] ∪̇ ([C] × [k]) | {u,w} ∈ E}.
Since M has k columns, each node v ∈ [n] satisfies |N(v)| = k. Since M has strength

112



5.3. Constructing Forward-Stable Topologies

at least 1, each head position (i, j) has |N((i, j))| = n/C. Due to Hall’s Theorem
(cmp. [Die05]) there is a matching covering all head positions in G, if it holds that
∀S ⊆ [C] × [k] : |

⋃
u∈S N(u)| ≥ |S|. We show that this is the case in G. For each

possible subset S of head positions, there are |S| · n/C edges to nodes from [n]. Since
these |

⋃
u∈S N(u)| nodes have |

⋃
u∈S N(u)| · k edges in total and since n/C ≥ k, we

obtain

|S| · n
C
≤
∣∣∣ ⋃
u∈S

N(u)
∣∣∣ · k (5.24)

⇒ |S| ≤
∣∣∣ ⋃
u∈S

N(u)
∣∣∣. (5.25)

Hence, there is a (maximum) matching R in G that connects each head position with a
unique node from [n]. For each {v, (i, j)} ∈ R, we use v as head in stripe j of T and
define σj(v) := i. Furthermore, we set childTj (v) := {u ∈ [n] \ {v} |M [u]j = i}. In each
stripe of the emerging topology T , every node is either head or child of a head. The
matching R guarantees that we have |HT | = Ck and that each head forwards in only
one stripe. The defined bijections σj with j ∈ [k] establish MT = M . Since M is of
strength at least 1, for all j ∈ [k] each head v ∈ HTj satisfies |succT→j (v)| = n/C. All
other forward successor sets are empty.

If we can choose MT as an Orthogonal Array with high strength t, this will be very
benificial for T ’s forward-stability.

Theorem 5.3.14
A topology T ∈ T(n,C, k) is t-forward-stable, if it has the properties of Lemma 5.3.2
and MT is an OA(n, k, C, t).

Proof. We show that, for every attack X ∈ χ(T , t) on such a topology T and every topol-
ogy C ∈ T(n,C, k), there is an attack Y ∈ χ(C, t) with ∀z ∈ [k] : bfT (X, z) ≤ bfT (Y, z).
To do this, we introduce and apply the following concepts.

Let us call s ∈ Nk with
∑k
i=1 si = Ck a head distribution and define the head vector

space for s as
V(s) := [s1]× . . .× [sk]. (5.26)

For every topology C ∈ T(n,C, k) with ∀i ∈ [k] : |HCi | = si, the rows of MC are elements
of V(s). This follows from the definition of MC , since each σi maps to [ |HCi | ].

A vector a of k elements with ∀i ∈ [k] : ai ∈ [0, si] will be named attack distribu-
tion for s. Given such an a, all vector attacks σ(X) for attacks X ⊆ HC with
∀i ∈ [k] : |X ∩HCi | = ai are contained in the set

X(a, s) :={
X = X1 × . . .× Xk

∣∣ ∀i ∈ [k] : (0 = ai ∧ Xi = {0}) ∨ ( 0 < ai = |Xi| ∧ Xi ⊆ [si] )
}
.

(5.27)
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Note that X(a, s) and V(s) will not intersect if a has entries of value zero. We will call
all elements of X(a, s) vector attacks, although it is possible that there is X ∈ X(a, s)
such that no X ⊆ HC with σ(X) = X exists. This case can appear if C has nodes that
are heads in multiple stripes. An example is given by a topology with C = 1, k = 2
and a single, identical head in both stripes. Here, there will be no head attack with
attack distribution (1, 0).

For a vector attack X ∈ X(a, s), we define the i-neighborhood Ni(X, s) of X in V(s)
as

Ni(X, s) := {v ∈ V(s) | i = min
x∈X

d(v,x)}, (5.28)

where d(·, ·) is, again, the Hamming Distance. If v ∈ Ni(X, s), we will say that v has
minimum distance i to X.

Before we can continue the proof, we have to establish the following three claims
about neighborhoods of vector attacks.

Claim 5.3.15
Let a be an attack distribution for a head distribution s. Then it holds that

∀X ∈ X(a, s),∀d ∈ [0, k] : |Nd(X, s)| =
∑

I⊆[k],|I|=d

∏
i∈I

(si − ai) ·
∏

i∈[k]\I

ai.

Proof. Fix an arbitrary vector attack X ∈ X(a, s). Remember that X = X1 × . . .× Xk.
For i ∈ [k], there are ai elements from [si] that are in Xi and (si − ai) elements that
are not. Each vector v ∈ V(s) with minimum Hamming Distance d to X has a unique
corresponding combination I ⊆ [k] with |I| = d, such that ∀j ∈ I : vj 6∈ Xj and
∀j ∈ [k] \ I : vj ∈ Xj . For a fixed combination I, there are

∏
i∈I(si − ai) ·

∏
i∈[k]\I ai

such vectors and summing up over all possible I ⊆ [k] of size d results in the size of X’s
d-neighborhood.

Claim 5.3.16
Let a be an attack distribution for a head distribution s. Then it holds that

∀v ∈ V(s) : |{X ∈ X(a, s) | v ∈ Nd(X, s)}| =
∑

I⊆[k],|I|=k−d
∀i∈I : ai 6=0

∏
i∈I

(
si − 1

ai − 1

) ∏
i∈[k]\I

(
si − 1

ai

)
(5.29)

Proof. Fix an arbitrary v ∈ V(s). For each X ∈ X(a, s) with v ∈ Nd(X, s), there is a
unique set I ⊆ [k] with |I| = k − d such that ∀i ∈ I : vi ∈ Xi and ∀i ∈ [k] \ I : vi 6∈ Xi.
In particular, this means that ∀i ∈ I : ai > 0, since vi > 0 and Xi = {0} if ai = 0.

Now fix such an index set I. For stripes i ∈ I, there are
(
si−1
ai−1

)
possibilities to choose

Xi ⊆ [si] with |Xi| = ai and vi ∈ Xi. For the stripes i ∈ [k]\ I, there are
(
si−1
ai

)
possible

ways to choose Xi with |Xi| = ai and Xi ⊆ [si] \ vi. Since X = X1 × . . . × Xk, each
different choice leads to a different vector attack X. Equation (5.29) is obtained by
summing up over all possible sets I.
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Claim 5.3.17
Let sa and sb be head distributions, such that
∃i, j ∈ [k] : (sbi ≤ sbj) ∧ (sai = sbi − 1) ∧ (saj = sbj + 1) ∧ (∀q ∈ [k] \ {i, j} : saq = sbq).
The following propositions are true:

1. Let a be an attack distribution for sa with ai ≥ aj . Then for every X ∈ X(a, sa)
and Y ∈ X(a, sb), it holds that

∀q ∈ [0, k] :

q∑
r=0

|Nr(X, sa)|
|V(sa)|

≥
q∑
r=0

|Nr(Y, sb)|
|V(sb)|

.

2. Let aa and ab be attack distributions for sa and sb, respectively. In addition,
they satisfy that for c ∈ {a, b} : aci = sci , ∀p ∈ [k] \ {i, j} : aap = abp, and

aaj =

{
0 , if abj = 0

abj + 1 , otherwise.

For every X ∈ X(aa, sa) and every Y ∈ X(ab, sb), it holds that

∀q ∈ [0, k] :

q∑
r=0

|Nr(X, sa)|
|V(sa)|

≥
q∑
r=0

|Nr(Y, sb)|
|V(sb)|

.

Figure 5.8 illustrates the relations of head and attack distributions in Claim 5.3.17.
Furthermore, Example 5.3.18 shows an instance of a described situation.

Example 5.3.18
For C = 3 and k = 3, a situation as specified in Proposition 1 of Claim 5.3.17 could
have head distributions sa = (2, 3, 4) and sb = (3, 3, 3). Furthermore, assume an
attack distribution a = (2, 0, 2).

Amongst others, we then have X = {1, 2} × {0} × {2, 4} ∈ X(a, sa) and
Y = {1, 2} × {0} × {2, 3} ∈ X(a, sb). The neighborhoods up to distance 1 of these
vector attacks are:

N0(X, sa) = N0(Y, sb) = ∅
N1(X, sa) = {1, 2} × [3]× {2, 4}
N1(Y, sb) = {1, 2} × [3]× {2, 3}

The vectors with distance up to 1 from X have a higher share in V(sa), than the
‘up-to-1 neighborhood’ of Y in V(sb):

1∑
r=0

|Nr(X, sa)|
|V(sa)|

=
0 + 12

2 · 3 · 4
=

1

2
≥ 4

9
=

0 + 12

3 · 3 · 3
=

1∑
r=0

|Nr(Y, sb)|
|V(sb)|
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i

j

1 2 3 4 5 1 2 3 4 5

(a) Proposition 1: a in sb vs. a in sa

i

j

1 2 3 4 51 2 3 4 5

(b) Proposition 2: ab in sb vs. aa in sa, abj > 0

i

j

1 2 3 4 51 2 3 4 5

(c) Proposition 2: ab in sb vs. aa in sa, abj = 0

Figure 5.8.: Schematic representation of situations as in Propositions 1 and 2 of
Claim 5.3.17. Tupel values visualized by horizontal extent. Head dis-
tributions framed by thick line, attack distributions filled gray. In both
cases the b-vectors are on the left !

Proof of Claim 5.3.17:

• Proposition 1: At first, note that |V(sa)| < |V(sb)| since sbi ≤ sbj and

|V(sa)| =
∏
q∈[k]

saq = (sbi − 1)(sbj + 1)
∏

q∈[k]\{i,j}

saq (5.30)

=
(sbi − 1)(sbj + 1)

sbis
b
j

sbis
b
j

∏
q∈[k]\{i,j}

sbq (5.31)

=
sbis

b
j − sbj + sbi − 1

sbis
b
j

|V(sb)|. (5.32)

Next, for c ∈ {a, b} and Z ∈ X(a, sc), we partition V(sc) based on the deviation
from Z in the positions i and j:

Dc∅(Z) := {v ∈ V(sc) | vi ∈ Zi ∧ vj ∈ Zj} (5.33)

Dc{i}(Z) := {v ∈ V(sc) | vi 6∈ Zi ∧ vj ∈ Zj} (5.34)

Dc{j}(Z) := {v ∈ V(sc) | vi ∈ Zi ∧ vj 6∈ Zj} (5.35)

Dc{i,j}(Z) := {v ∈ V(sc) | vi 6∈ Zi ∧ vj 6∈ Zj} (5.36)

Since the definition of the D-sets implies a minimum distance from Z, they do
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not intersect certain neighborhoods of Z:

N0(Z, sc) ∩ Dc{i}(Z) = ∅ (5.37)

N0(Z, sc) ∩ Dc{j}(Z) = ∅ (5.38)

(N0(Z, sc) ∪N1(Z, sc)) ∩ Dc{i,j}(Z) = ∅ (5.39)

By assumption, we have ∀q ∈ I \ {i, j} : saq = sbq. To shorten notation, let us
introduce the following term for d ∈ [0, k − 2]:

T (d) :=
∑

I⊆[k]\{i,j}
|I|=d

∏
q∈I

(saq − aq)
∏

q∈[k]\{i,j}\I

aq. (5.40)

For c ∈ {a, b} and Z ∈ X(a, sc), it gives the number of vectors in V(sc) that have
a fixed value tupel in positions i and j, and that deviate from Z in exactly d
other positions. Since sa and sb deviate only in the positions i and j, this value
is the same for Z ∈ X(a, sa) and Z ∈ X(a, sb).

For every d ∈ [0, k], it holds that

|Nd(X, sa) ∩ Da∅(X)| = aiaj · T (d) = |Nd(Y, sb) ∩ Db∅(Y)|. (5.41)

Hence, the absolute number of vectors deviating from X, resp. Y, neither in
position i nor j is equal in Nd(X, s

a) and Nd(Y, s
b). Furthermore, it holds that

|Nd(X, sa) ∩ (Da{i}(X) ∪ Da{j}(X))|
= ((sai − ai)aj + (saj − aj)ai) · T (d− 1) (5.42)

= ((sbi − 1− ai)aj + (sbj + 1− aj)ai) · T (d− 1) (5.43)

= ((sbi − ai)aj + (sbj − aj)ai + (ai − aj)) · T (d− 1) (5.44)

= |Nd(Y, sb) ∩ (Db{i}(Y) ∪ Db{j}(Y))|+ (ai − aj) · T (d− 1). (5.45)

Since ai ≥ aj , the absolute number of vectors in Nd(X, s
a) that deviate from X

in either position i or j, cannot be smaller than the number of such vectors in
Nd(Y, s

b).

In contrast, we have

|Nd(X, sa) ∩ Da{i,j}(X)|
= (sai − ai)(s

a
j − aj) · T (d− 2) (5.46)

= (sbi − 1− ai)(s
b
j + 1− aj) · T (d− 2) (5.47)

=
(

(sbi − ai)(s
b
j − aj) + sbi − sbj + aj − ai − 1

)
· T (d− 2) (5.48)

= |Nd(Y, sb) ∩ Db{i,j}(Y)| − ((sbj − sbi ) + (ai − aj) + 1) · T (d− 2). (5.49)
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Since aj ≤ ai < sbi ≤ sbj , this demonstrates that the absolute number of vectors
in Nd(X, s

a) that deviate in both position i and j from X is smaller than the
number of such vectors in Nd(Y, s

b).

However, we are interested in the relative shares of neighborhoods in V(sa) and
V(sb). Due to the Equations (5.37)–(5.39), for c ∈ {a, b}, Z ∈ X(a, sc), and
q ∈ [0, k], we can make the following transformations:

q∑
r=0

|Nr(Z, sc)|
|V(sc)|

=

q∑
r=0

|Nr(Z, sc) ∩ Dc∅(Z)|
|V(sc)|

+

q∑
r=0

|Nr(Z, sc) ∩ (Dc{i}(Z) ∪ Dc{j}(Z))|
|V(sc)|

+

q∑
r=0

|Nr(Z, sc) ∩ Dc{i,j}(Z)|
|V(sc)|

=
|Nq(Z, sc) ∩ (Dc∅(Z) ∪ Dc{i}(Z) ∪ Dc{j}(Z))|

|V(sc)|
+
|Nq−1(Z, sc) ∩ Dc∅(Z)|

|V(sc)|

+

q∑
r=2

|Nr−2(Z, sc) ∩ Dc∅(Z)|
|V(sc)|

+

q∑
r=2

|Nr−1(Z, sc) ∩ (Dc{i}(Z) ∪ Dc{j}(Z))|
|V(sc)|

+

q∑
r=2

|Nr(Z, sc) ∩ Dc{i,j}(Z)|
|V(sc)|

(5.50)

Due to |V(sa)| < |V(sb)| and the Equations (5.41) and (5.45), we know that

|Nq(X, sa) ∩ (Da∅(X) ∪ Da{i}(X) ∪ Da{j}(X))|
|V(sa)|

+
|Nq−1(X, sa) ∩ Da∅(X)|

|V(sa)|

>
|Nq(Y, sb) ∩ (Db∅(Y) ∪ Db{i}(Y) ∪ Db{j}(Y))|

|V(sb)|
+
|Nq−1(Y, sb) ∩ Db∅(Y)|

|V(sb)|
. (5.51)

Furthermore, for every d ∈ [2, k], we can show the following equality:

|Nd(X, sa) ∩ Da{i,j}(X)|
|V(sa)|

+
|Nd−1(X, sa) ∩ (Da{i}(X) ∪ Da{j}(X))|

|V(sa)|

+
|Nd−2(X, sa) ∩ Da∅(X)|

|V(sa)|

=
|Nd(Y, sb) ∩ Db{i,j}(Y)|

|V(sa)|
+
|Nd−1(Y, sb) ∩ (Db{i}(Y) ∪ Db{j}(Y))|

|V(sa)|

+
|Nd−2(Y, sb) ∩ Db∅(Y)|

|V(sb)|
(5.52)
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Note that |V(sb)| > |V(sa)| > 0 is true. If T (d− 2) = 0, then both sides are zero
(cmp. Equations (5.41),(5.44), and (5.48)). Otherwise, dividing both sides by

T (d− 2)

|V(sb)|
(5.53)

and using Equations (5.32), (5.41), (5.44), and (5.48) leaves

sbis
b
j

(sbi − 1)(sbj + 1)
·
( (

(sbi − ai)(s
b
j − aj) + sbi − sbj + aj − ai − 1

)
+
(
(sbi − ai)aj + (sbj − aj)ai) + ai − aj

)
+ (aiaj)

)
=
(

(sbi − ai)(s
b
j − aj) + (sbi − ai)aj + (sbj − aj)ai) + (aiaj)

)
,

(5.54)reducing to(
sbis

b
j

(sbi − 1)(sbj + 1)

)
·
(
sbis

b
j

)
+

sbis
b
j(s

b
i − sbj − 1)

(sbi − 1)(sbj + 1)
= sbis

b
j (5.55)

⇔

(
(sbi − 1)(sbj + 1)

(sbi − 1)(sbj + 1)

)
sbis

b
j = sbis

b
j ⇔ sbis

b
j = sbis

b
j . (5.56)

Hence, Equation (5.52) is true. Together with Equation (5.50) and Inequal-
ity (5.51), it leads to

∀q ∈ [0, k] :

q∑
r=0

|Nr(X, sa)|
|V(sa)|

≥
q∑
r=0

|Nr(Y, sb)|
|V(sb)|

. (5.57)

• Proposition 2: The proof is similar to that of Proposition 1. Since aai = sai , there
are no vectors in V(sa) that can deviate from X in position i. The same applies
to Y, since abi = sbi . Hence, for arbitrary c ∈ {a, b} and Z ∈ X(ac, sc), we know
that

D{i}(Z) = ∅ (5.58)

D{i,j}(Z) = ∅. (5.59)

Consequently, V(sc) is bipartitioned by D∅(Z) and D{j}(Z).

The Equations (5.37)–(5.39) still apply and for q ∈ [0, k] we can simplify Equa-
tion (5.50) to

q∑
r=0

|Nr(Z, sc)|
|V(sc)|

=
|Nq(Z, sc) ∩ Dc∅(Z)|

|V(sc)|
+

q∑
r=1

|Nr−1(Z, sc) ∩ Dc∅(Z)|+ |Nr(Z) ∩ Dc{j}(Z)|
|V(sc)|

. (5.60)
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For c ∈ {a, b} and Z ∈ X(ac, sc), we can write

|Nd(Z, sc) ∩ Dc∅(Z)|
|V(sc)|

=
acj
scj
· a

c
i

sci
·

∑
I⊆[k]\{i,j}
|I|=d

∏
p∈I

(scp − acp)
∏

p∈[k]\{i,j}\I
acp

∏
p∈[k]\{i,j}

scp
(5.61)

and

|Nd(Z, sc) ∩ Dc{j}(Z)|
|V(sc)|

=
(scj − acj)

scj
· a

c
i

sci
·

∑
I⊆[k]\{i,j}
|I|=d−1

∏
p∈I

(scp − acp)
∏

p∈[k]\{i,j}\I
acp

∏
p∈[k]\{i,j}

scp
.

(5.62)

Due to our assumption that aai = sai , abi = sbi , aaj = abj + min(abj , 1), saj = sbj + 1,

aaj ≤ saj , and ∀p ∈ [k] \ {i, j} : aap = abp ∧ sap = sap hold, for every d ∈ [0, k], it
follows from Equation (5.61) that

|Nd(X, sa) ∩ Da∅(X)|
|V(sa)|

≥
|Nd(Y, sb) ∩ Db∅(Y)|

|V(sb)|
. (5.63)

Furthermore, for d ∈ [k] the Equations (5.61) and (5.62) lead to

|Nd−1(X, sa) ∩ Da∅(X)|+ |Nd(X, sa) ∩ Da{j}(X)|
|V(sa)|

=

∑
I⊆[k]\{i,j}
|I|=d−1

∏
p∈I(s

a
p − aap)

∏
p∈[k]\{i,j}\I aap∏

p∈[k]\{i,j} sap

=
|Nd−1(Y, sb) ∩ Db∅(Y)|+ |Nd(Y, sb) ∩ Db{j}(Y)|

|V(sb)|
.

(5.64)

Hence, using Equations (5.60), (5.63), and (5.64), we obtain

∀q ∈ [0, k] :

q∑
r=0

|Nr(X, sa)|
|V(sa)|

≥
q∑
r=0

|Nr(Y, sb)|
|V(sb)|

. (5.65)

Now let s be a head distribution and a be an attack distribution for s. Furthermore,
let C ∈ T(n,C, k) have ∀i ∈ [k] : |HCi | = si and let X ⊆ HC be an arbitrary head attack
with ∀i ∈ [k] : |X ∩HCi | = ai.

The forward-damage bfC(X, z) for all z ∈ [k] equals the total number of occurences
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of the vectors
⋃k−z
d=0 Nd(σ(X), s) as rows in MC (cmp. Equation (5.22)):

bfC(X, z) = |{v ∈ V | ∃x ∈ σ(X) : d(MC [v],x) ≤ k − z}|

=

∣∣∣∣∣
{
v ∈ V

∣∣∣MC [v] ∈
k−z⋃
d=0

Nd(σ(X), s)

}∣∣∣∣∣ . (5.66)

Over all X ∈ X(a, s), let us calculate the average number of occurences of the vectors⋃k−z
d=0 Nd(X, s) as rows in MC. By Claim 5.3.15, the cardinality

∣∣∣⋃k−zd=0 Nd(X, s)
∣∣∣ is

equal for all X ∈ X(a, s). Due to Claim 5.3.16, each v ∈ V(s) is in minimum Hamming
Distance up to k − z with the same number of vector attacks X ∈ X(a, s). Hence, the
same applies to each of the n rows of MC . Using an arbitrary X ∈ X(a, s), we can write

∑
v∈V

∑
Y∈X(a,s)

∣∣∣∣∣
k−z⋃
d=0

Nd(Y, s) ∩ {MC [v]}

∣∣∣∣∣ =
∑
v∈V

∑
v∈V(s)

v=MC [v]

∑
Y∈X(a,s)

∣∣∣∣∣
k−z⋃
d=0

Nd(Y, s) ∩ {v}

∣∣∣∣∣
=
∑
v∈V

∑
v∈V(s)

v=MC [v]

1

V(s)

∑
Y∈X(a,s)

∣∣∣∣∣
k−z⋃
d=0

Nd(Y, s)

∣∣∣∣∣
=
∑
v∈V

∑
v∈V(s)

v=MC [v]

|X(a, s)| ·
∣∣∣⋃k−zd=0 Nd(X, s)

∣∣∣
V(s)

= n ·
|X(a, s)| · |

⋃k−z
d=0 Nd(X, s)|

V(s)
. (5.67)

Dividing by |X(a, s)|, we obtain the average number of occurences of the vectors⋃k−z
d=0 Nd(X, s) as rows in MC over all X ∈ X(a, s):

bf
C
(X, z) :=

k−z∑
d=0

|Nd(X, s)| · n

|V(s)|
. (5.68)

This function plays a crucial role in the remaining part of this proof. In particular, it
provides a lower bound on the maximum LoSS-damage of certain attacks on C. Given

any attack distribution a for s, let Y ∈ arg max
Z∈X(a,s)

∑
v∈V

∣∣∣⋃k−zd=0 Nd(Z, s) ∩ {MC [v]}
∣∣∣ and

define
YY :=

⋃
i∈[k]

{σ−1
i (yi) | y ∈ Y ∧ yi > 0}. (5.69)

It holds that |YY| ≤
∑k
i=1 ai. Furthermore, we have Yi ⊆ {σi(h) |h ∈ YY ∩HCi }, for
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all i ∈ [k]. This leads to

∀z ∈ [k] : bfC(YY, z) ≥
∑
v∈V

∣∣∣∣∣
k−z⋃
d=0

Nd(Y, s) ∩ {MC [v]}

∣∣∣∣∣ ≥ bf
C
(Y, z). (5.70)

In the following, we assume that T ∈ T(n,C, k) is a topology with the properties
given in Lemma 5.3.2 and with MT being an OA(n, k, C, t).

Claim 5.3.19
For every attack X ⊆ HT with X ∈ χ(T , t), it holds that bfT (X, z) = bf

T
(σ(X), z).

Proof. The head distribution for T is sT = (C, . . . , C) and there is an attack distribution
a with ∀i ∈ [k] : |X ∩HTi | = ai. Since X ∈ χ(T , t) and since T has the one-stripe-
only property, a has at most t non-zero values. In particular, there is I ⊆ [k] with
|I| = t and {i ∈ [k] | X ∩HTi 6= ∅} ⊆ I. Therefore, the Hamming Distance of every
v ∈ V(sT ) to an x ∈ σ(X) will be at least k − t and a node v ∈ V is damaged only if
k − t ≤ minx∈σ(X) d(MT [v],x) ≤ k − z (see Equation (5.22)).

Let MTI be the n× t submatrix of MT consisting of the complete columns I and let
sTI be the restriction of sT to the positions I. Then, v is equivalently damaged if and
only if minx∈σ(X)I d(MTI [v],x) ≤ t− z, where σ(X)I is the set of sub-vectors of σ(X)
in the columns I. Since MT is an Orthogonal Array of strength t, each possible vector
from [C]t occurs n/Ct times as a row vector in MTI . This leads to

bfT (X, z) =

t−z∑
d=0

|Nd(σ(X)I , s
T
I )| · n

Ct
. (5.71)

For each vector v ∈ [C]t, there are Ck−t vectors in V(sT ) = [C]k sharing v as a subvector
in their positions I. Thus, it holds that |Nd+(k−t)(σ(X), sT )| = |Nd(σ(X)I , s

T
I )| ·Ck−t.

Additionally applying Equation (5.68) we obtain

bfT (X, z) =

t−z∑
d=0

|Nd(σ(X)I , s
T
I )| · n

Ct
=

k−z∑
d=0

|Nd(σ(X), sT )| · n
Ck

= bf
T

(σ(X), z).

(5.72)

Now let C ∈ T(n,C, k) be a witness against the t-forward-stability of T , i.e., for some
attack size x ∈ [Ck], some z ∈ [k], and I ⊆ [k] with |I| = t, it holds that

max
X⊆

⋃
i∈I H

T
i ,|X|=x

bfT (X, z) > max
Y ∈χ(C,t),|Y |=x

bfC(Y, z). (5.73)

Here, the restriction to heads in T can be made due to Corollary 5.3.6.

For such witnesses, we can make a number of assumptions.
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Claim 5.3.20
If there is a witness C ∈ T(n,C, k) against the t-forward-stability of T , then there is
a witness C′ ∈ T(n,C, k) with depth 2 and

∑
i∈[k] |HC

′

i | = Ck.

Proof. If d(C) 6= 2, there is C′ ∈ T(n,C, k) defined by

∀i ∈ [k],∀v ∈ V : parentC
′

i (v) :=

{
{s} , if v ∈ HCi
predCi (v) ∩HCi , otherwise.

(5.74)

The obtained topology C′ satisfies ∀v ∈ V, ∀i ∈ [k] : succC
′→
i (v) ⊆ succC→i (v), which

leads to ∀X ⊆ V : bfC
′
(X, z) ≤ bfC(X, z). Since C is a witness, C′ is a witness, too.

Now assume d(C) = 2 but
∑
i∈[k] |HC

′

i | < Ck. Since n ≥ Ck, there is v ∈ V \HC.
For a fixed i ∈ [k], let {h} = predCi (v) ∩ HCi . We create a topology C′ that differs
from C only in stripe i. In particular, T ′i ∈ C′ is obtained from Ti ∈ C by making v an

additional, childless head in T ′i and setting ∀u ∈ childCi (v) : parentC
′

i (u) := parentCi (v).
This leads to

∀j ∈ [k],∀u ∈ V \ {v} : succC
′→
j (v) ⊆ succC→j (h) ∧ succC

′→
j (u) ⊆ succC→j (u). (5.75)

Study an arbitrary attack X ∈ χ(C′, t). If either h ∈ X or v ∈ X, it holds that

bfC(X \ {v}∪ {h}, z) ≥ bfC
′
(X, z). Otherwise, we have bfC(X, z) ≥ bfC

′
(X, z). In both

cases, the attack on C is in χ(C, t), since X ∈ χ(C′, t). Consequently, C′ is again a
witness, since C was a witness. Iterating this procedure leads to a topology C′ with∑k

i=1 |HC
′

i | = Ck.

Note that in a topology of depth 2, optimal attacks contain only heads, since all other
nodes have empty forward successor sets.

In the following, we expect witness C to be a topology of depth 2 with
∑k
i=1 |HCi | = Ck.

Furthermore, there is a head distribution sC such that ∀i ∈ [k] : |HCi | = sCi . W.l.o.g. we
assume that ∀i ∈ [k− 1] : sCi ≤ sCi+1. This can be achieved by renaming the stripes of C.

Claim 5.3.21
For every attack X ∈ χ(T , t), there is an attack Y ⊆ HC with Y ∈ χ(C, t) and
|Y | ≤ |X|, such that bfC(Y, z) ≥ bfT (X, z).

Proof. Due to Corollary 5.3.6, it suffices to study attacks X ⊆ HT only. Let aT

be the attack distribution with ∀i ∈ [k] : aTi = |X ∩ HTi |. W.l.o.g., we can assume
that ∀i ∈ [k − 1] : aTi ≥ aTi+1 (otherwise rename the stripes of T ). Since T has the

one-stripe-only property, it holds that
∑k
i=1 aTi = |X|. Furthermore, aT has at most t

non-zero entries because X ∈ χ(T , t) additionally holds.
Now observe that sT = (C, . . . , C) can be transformed into sC by iterating the

following operation: given a head distribution sb, return an altered head distribution
sa with, for distinct i, j ∈ [k], sai := sbi − 1, saj := sbj + 1 and ∀q ∈ [k] \ {i, j} : saq := sbq.
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By tracing the shortest sequence of such operations transforming sT into sC, we
can simultaneously transform aT into an attack distribution aC for sC . Let ab be the
attack distribution before a modification of sa in positions i, j ∈ [k]. Then we return
an altered aa with ∀q ∈ [k] \ {i, j} : aaq := abq,

aai :=

{
abi , if sai ≥ abi
abi − 1 , otherwise,

and aaj :=


abj , if sai ≥ abi
abj + 1 , if sai < abi ∧ abj > 0

0 , otherwise.

(5.76)

Note that for each operation, the pairs (ab, sb) and (aa, sa) correspond to the situation
in either Proposition 1 or 2 of Claim 5.3.17. Both were visualized in Figure 5.8. In
particular, it holds that ∀p ∈ [k] : abp = 0⇔ aap = 0. Since the sequence of operations

starts with aT and ends with aC , we also obtain ∀p ∈ [k] : aTp = 0⇔ aCp = 0.

Now let Y ∈ arg maxZ∈X(aC,sC)

∑
v∈V

∣∣∣⋃k−zd=0 Nd(Z, s
C) ∩ {MC [v]}

∣∣∣ and let YY be

defined as in Equation (5.69). It holds that |YY| ≤
∑k
i=1 aCi ≤

∑k
i=1 aTi = |X|.

Furthermore, each node in YY is head of C in at least one stripe p ∈ [k] with aCp 6= 0.

Since both aT and aC have at most t non-zero entries, it holds that YY ∈ χ(C, t).
The claim is proven by showing the following:

bfC(YY, z) ≥ bf
C
(Y, z) = n ·

∑k−z
d=0 |Nd(Y, sC)|
|V(sC)|

(5.77)

≥ n ·
∑k−z
d=0 |Nd(σ(X), sT )|
|V(sT )|

(5.78)

= bf
T

(σ(X), z) = bfT (X, z). (5.79)

For this, we use Inequality (5.70) and Equation (5.68) in Line (5.77). Applying
Propositions 1 and 2 of Claim 5.3.17 on (ab, sb) and (aa, sa) for each step of the above-
mentioned sequence of operations, we obtain Line (5.78). Finally, Equation (5.68) and
Claim 5.3.19 lead to the result in Line (5.79).

Claim 5.3.21 contradicts the assumption that C was a witness against the t-forward-
stability of T . Therefore, no such witness can exist in T(n,C, k) and T must be
t-forward-stable.

In the following, we will show that if Orthogonal Arrays OA(n, k,C, t) exist, their
use is necessary for the forward-stability of topologies T ∈ T(n,C, k). This will follow
from an important result about generalizations of Orthogonal Arrays.

Definition 5.3.22 Packing Array [BB12]
For n, k,C, t, λ ∈ N, an n× k matrix M with entries mvi ∈ [C] is called a Packing
Array PAλ(n, k, C, t), if in every n× t submatrix M ′ consisting of t complete columns
of M , each x ∈ [C]t appears at most λ times as a row.
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A PAλ(λCt, k, C, t) is an OA(λCt, k, C, t), since the maximum row frequency is limited
to the average frequency over all possible combinations of t-vectors over [C]. Due
to an argument very similar to that of Corollary 5.3.11, every PAλ(n, k,C, t) is a
PAλC(n, k,C, t − 1). Regarding the minimum possible values of λ, we can show the
following Lemma.

Lemma 5.3.23
For n, k,C, t ∈ N and t < k, let λt resp. λt+1 be the smallest values λ such that a
Packing Array PAλ(n, k, C, t) resp. PAλ(n, k, C, t+ 1) exists.
It holds that λt ≥ λt+1 ≥

⌈
λt
C

⌉
.

Proof. Let Mt be a PAλt(n, k, C, t) and Mt+1 be a PAλt+1
(n, k, C, t+ 1).

Assume that λt+1 <
⌈
λt
C

⌉
. Since Mt+1 is also a PACλt+1

(n, k,C, t), it holds that

Cλt+1 ≤ C · (
⌈
λt
C

⌉
− 1) < λt. This is a contradiction with the assumption that λt is

minimal.
Now assume λt+1 > λt, fix t+ 1 arbitrary columns of Mt and count the frequencies

of their rows. The frequency of a row in any t of these t+ 1 columns is limited to λt.
Additionally considering the (t+ 1)-th column, the maximum frequency of a row cannot
be higher than λt, since in the worst case (the complete (t+ 1)-th row contains the
same entry) it would be just the maximum frequency of a row in the t other columns.
Thus, Mt is a PAλt(n, k, C, t+ 1). However, this is a contradiction with the assumption
that λt+1 is minimal.

This inequality is strict, since Orthogonal Arrays of strength t+ 1 achieve the lower
bound and the upper bound is always hit for Orthogonal Arrays of index 1 and strength
t < k. The following theorem shows that Packing Arrays of minimum λ are important
for forward-stability.

Theorem 5.3.24
Let M(n, k, C, p) be the set of Packing Arrays PAλ(n, k, C, p) with

λ = min{λ ∈ N | a PAλ(n, k, C, p) exists}.

Every t-forward-stable topology T ∈ T(n,C, k) has MT ∈
(⋂t

p=1 M(n, k, C, p)
)

.

Proof. Assume MT is not in
⋂t
p=1 M(n, k,C, p). Then there is p ≤ t, such that

MT 6∈M(n, k, C, p). Due to Corollary 5.3.1, the t-forward-stable topology T has to
minimize the maximum forward-damage for attacks of cardinality p and z = p. We
show that, under the above assumption, this is not the case.
T must have the properties listed in Lemma 5.3.2. Furthermore, let C ∈ T(n,C, k)

be a topology with the same properties and MC ∈M(n, k, C, p).
For z = p, study the possible forward-damage of attacks of cardinality p. Such an

attack may target heads from less than p different stripes, leading to forward-damage
of 0. Alternatively, it can target one head from each stripe of a combination of p stripes.
The maximum forward-damage of the latter attacks on T and C equals the maximum
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n k C t Method Remark

Ct C + 1 C ≥ t t [Bus52]/Reed-Solomon C is prime power
λCt t+ 1 C t Zero-Sum Arrays λ ∈ N

p(t−1)m+q pm +
⌊
m
q

⌋
pq t [Bie96] p prime, 2≤t≤pm

q≤m

Ck−m Cm−1
C−1 C Cm−1 − 1 Rao-Hamming constr. C is prime power

23m−1 2m 2 7 Delsarte-Goethals codes
22m+1 2m + 1 2 5 BCH codes m ≥ 5
C4 C2 + 1 C 3 [HSS99, pp. 101-102] C is prime power
8λ 4λ 2 3 Hadamard Arrays λ ∈ N

Table 5.1.: An incomplete list of generic constructions for Orthogonal Arrays. Generally
m ∈ N. See [HSS99] for details.

row frequency in MTI resp. MCI′ over all I, I ′ ⊆ [k], |I| = |I ′| = p. An attack achieving
this damage contains the heads corresponding to the entries of the most frequent row
vector. Since C ∈ M(n, k,C, p) 63 T , the damage value is smaller on C than on T .
Hence, T is not t-forward-stable.

Note that we cannot generally assume M(n, k, C, t) =
⋂t
p=1 M(n, k, C, p). Following the

notation of Lemma 5.3.23, we could have the case that λt−1 = qC + r for q ∈ N and
r ∈ [C − 1]. Then, we had λt ≥ (q + 1). Hence, the matrices M(n, k, C, t) would all be
PA(q+1)C(n, k, C, t) but need not be PAλt−1(n, k, C, t− 1). Thus, they do not have to
be part of M(n, k, C, t− 1).

Theorem 5.3.24 has the following corollary as a special case.

Corollary 5.3.25
If an OA(n, k, C, t) exists, then for every t′-forward-stable T ∈ T(n,C, k) with t′ ≥ t,
MT is an OA(n, k, C, t).

Proof. For an OA(n, k,C, t) M , the maximum row frequency of a vector v ∈ [C]t in
any t-column submatrix of M equals the average value n

Ct of these frequencies. Thus,
it cannot be decreased further. If OA(n, k,C, t) exist, these are exactly the matrices
in M(n, k,C, t). Since each OA(n, k,C, t) is an OA(n, k,C, t− 1), we especially have
M(n, k, C, t) =

⋂t
i=1 M(n,C, k, i).

Hence, when aiming to create a forward-stable distribution topology T ∈ T(n,C, k),
we have to find the maximum t such that an OA(n, k,C, t) exists. For this, we can
rely on the existing theory on Orthogonal Arrays (e.g., [CD06, HSS99] and references
therein), which offers both a high number of generic constructions based on Galois
Fields and finite geometries, combinatorics, and error-correcting codes, together with
lists of specific Orthogonal Arrays that do not follow one of the known constructions.
Table 5.1 lists some of the generic constructions known so far. It is easy to see that
they are only available for specific parameter combinations. At least, we can still use
the concatenation property of Corollary 5.3.12 to form Orthogonal Arrays having more
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rows. The general decision on the existence of Orthogonal Arrays for given parameters
will be a topic of Section 5.3.4.

5.3.3. Connections with Error-Correcting Codes

Despite our progress on necessary and sufficient conditions for t-forward stability in
Subsection 5.3.2, important questions are still unaddressed. In particular, we do not
exactly know which topologies T ∈ T(n,C, k) with matrices MT ∈

⋂k
p=1 M(n, k, C, p)

are indeed forward-stable.

A possible approach to shed light on this question is to introduce the interpretation
of MT as a matrix listing an error-correcting code. This is the topic of this subsection.
Along the way, we will give a review of necessary and connected coding-theoretical
results and mention how to efficiently determine the strength of a given matrix. This
is a premise for results in Subsection 5.3.4. Then, we identify Maximum Distance
Separable (MDS) codes as a class of codes with very beneficial stability characteristics.
We will show important properties of these codes and suggest studying their isometry
classes, since they categorize behavior of topologies T ∈ T(n,C, k) under attacks from
P(V ) \ χ(T , t) where t is the strength of MT as an Orthogonal Array.

At first, we introduce codes.

Definition 5.3.26 Code M [Bie05, Definition 1.8]
Let A be a finite set and let k ∈ N. A code of length k over alphabet A is a set
M ⊆ Ak. Each v ∈M is called codeword.

Generally, we will not distinguish between a code and a matrix listing all codewords.
Thus, we will denote both by M and write v ∈M if v is a row of M . Figure 5.9 gives
an example of a code.

A code over an alphabet of cardinality C is called C-ary. The strength of a code
is equivalent to the strength of the matrix M in terms of Orthogonal Arrays. The
minimum distance of a code is the minimum of pairwise Hamming Distances between
distinct codewords.

Since we aim at finding forward-stable topologies, in the following we generally assume
that the studied topologies T ∈ T(n,C, k) have the properties given in Lemma 5.3.2.
Now fix an arbitrary T ∈ T(n,C, k) with these properties. If each v ∈ [C]k appears at
most once as a row of MT , the matrix MT is code of length k over the alphabet [C].

It is easy to see the following:

Corollary 5.3.27
For every forward-stable topology T ∈ T(n,C, k), the matrix MT is a code if n ≤ Ck.

Proof. This follows from Theorem 5.3.24 and the fact that for n ≤ Ck the set
M(n,C, k, k) is exactly the set of codes over the alphabet [C] which have n code-
words and length k.
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M =



1 1 1
1 2 3
1 3 2
2 1 3
2 2 2
2 3 1
3 1 2
3 2 1
3 3 3



(a) M as a matrix

x

y

z

1

2

3
2

3

2

3

(b) M in [3]3

Figure 5.9.: A code M over alphabet [3] with 9 codewords of length 3. M is isometric
to an MDS code.

A Technical Assumption The forward-damage bfT (X, z) of a head attack X ⊆ HT
is equal to the number of MT ’s codewords in a Hamming Distance up to k − z from
σ(X) (see Equation (5.22)).

If there is a stripe i ∈ [k] such that X ∩HTi = ∅, this will lead to a difference in
vector position i between every x ∈ σ(X) and every v ∈ [C]k. It follows that

bfT (X, z) = bfT \{Ti}(X, z), (5.80)

since on topology T \ {Ti} the distance limit drops to k − z − 1 and, for every node
v ∈ V , we have d(σ(X),MT \{Ti}[v]) = d(σ(X),MT [v])− 1.

Hence, an attack X with ∃I ⊂ [k] such that X ⊆
⋃
i∈I H

T
i can be analyzed on

a substitutional topology
⊎
i∈I{Ti} consisting only of the stripes I of T . We will

therefore, from now on, assume, that every attack on a topology T targets at least one
head of each stripe of T . This gives the technical advantage that σ(X) ⊆ [C]k.

Minimum Distances In this setting, the stability properties of MT are determined
by the arrangement of its codewords in the metric space ([C]k,d), where d is the
Hamming distance. Each head attack X ⊆ HT corresponds to a set of vectors σ(X)
from [C]k and for each vector x ∈ [C]k there is a head attack X with σ(X) = {x}. The
forward-damage of an attack X equals the number of codewords within a Hamming
distance up to k − z from any of the vectors σ(X). Consequently, the code MT of
a forward-stable topology T must have a high minimum distance d, since

⌈
d
2

⌉
is the
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minimum distance such that we can find an x ∈ [C]k (i.e., a possible attack) having
more than one of MT ’s codewords (rows) in within this distance.

Code Isometries When studying MT as a code, we should also consider code isometry.
A mapping φ : A→ B between two metric spaces (A,d1) and (B,d2) is an isometry,
if it is distance-preserving, i.e., ∀a, b ∈ A : d1(a, b) = d2(φ(a), φ(b))). In the following,
we will generally restrict to isometries regarding the Hamming distance metric. As a
result of [CH96, Theorem 1], a mapping from [C]k to [C]k is an such an isometry if
and only if it consists of a permutation of the vector positions (i.e., columns) and in
each position an independent renaming of the code letters.

For two n × k-matrices M1,M2 with entries from [C], we will write φ(M1) = M2

if ∀v ∈ [n] : φ(M1[v]) = M2[v]. For the study of forward-stability of topologies
T ∈ T(n,C, k), isometries φ : [C]k → [C]k are interesting not only when considering
MT to be a code.

Lemma 5.3.28 Isometries of MT

Let T1, T2 ∈ T(n,C, k) be distribution topologies with the properties listed in
Lemma 5.3.2 and let φ be an isometry φ : [C]k → [C]k with φ(MT1) = MT2 .

For every head attack X ⊆ HT1 there is a head attack Y ⊆ HT2 and a permutation
π of [k], such that it holds that

∀i ∈ [k] : |X ∩HT1
i | = |Y ∩H

T2

π(i)| and ∀z ∈ [k] : bfT1(X, z) = bfT2(Y, z).

Proof. For i ∈ [k], let σT1
i and σT2

i be the bijections used to construct MT1 and MT2 .
By [CH96], the isometry φ consists of a permutation π of the vector positions of each
vector in [C]k and bijections φ1, . . . , φk : [C]→ [C] such that φi renames the letters of
position i after the permuation. We construct Y from X as

Y :=
⋃
i∈[k]

{
h ∈ HT2

π(i)

∣∣∣∃x ∈ X ∩HT1
i : σT2

π(i)(h) = φπ(i)(σ
T1
i (x))

}
. (5.81)

This definition ensures that φ(σT1(X)) = σT2(Y ) and ∀i ∈ [k] : |X ∩HT1
i | = |Y ∩H

T2

π(i)|.
Since φ is an isometric, bijective mapping from [C]k to [C]k, it holds that

bfT1(X, z) = |{v ∈ V | ∃x ∈ σT1(X) : d(MT1 [v],x) ≤ k − z}| (5.82)

= |{v ∈ V | ∃x ∈ φ(σT1(X)) : d(φ(MT1 [v]),x) ≤ k − z}| (5.83)

= |{v ∈ V | ∃x ∈ σT2(Y ) : d(MT2 [v],x) ≤ k − z}| = bfT2(Y, z). (5.84)

Hence, a topology T ∈ T(n,C, k) is t-forward-stable if and only if there is a t-forward-
stable topology C ∈ T(n,C, k) and an isometry φ : [C]k → [C]k such that φ(MC) = MT .
Consequently, when studying the forward-stability of topologies whose matrix MT is a
code, it suffices to study the equivalence classes of these codes under isometries from
[C]k to [C]k.
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Linear Codes Codes with especially interesting properties are the linear codes. They
are defined with the Galois field FC as their alphabet. Although the codes MT studied
so far had the alphabet [C], this alphabet change is only of a technical nature. Every
numbering of the elements of FC is a bijection between FC and [C]. Using one of them
to rename the code letters admits a bijective isometry mapping FkC to [C]k (and with
it any code inside these spaces).

Definition 5.3.29 Linear Code [Bie05, Definition 3.6]
Let FC be the Galois field with C elements. A linear subspace M ⊆ FkC of vector
space dimension t is called a C-ary linear code of length k and dimension t.

As a vector subspace of FkC , each linear code M is characterized by a base consisting of t
linearly independent vectors from M . The codewords of M are the linear combinations
(with computations in FC) of these base vectors. Hence, M has Ct codewords.

One of the most important classes of linear codes are the (Extended) Reed-Solomon
Codes [RS60, MS93]. They can be used in the construction of Orthogonal Arrays (cmp.
Table 5.1) and are possible candidates for stream error correction (see Section 2.1.2).

Linear codes have the following property.

Corollary 5.3.30
For each codeword v of a code M , define d(v) = (d0, . . . , dk) with
di := |{w ∈M | d(v,w) = i}| as the distance distribution of v in M . If M is a
linear code, then for every pair v,w ∈M it holds that d(v) = d(w).

Proof. Adding w − v to every codeword of M is an isometry φ : M → M (here, a
special renaming of code letters in each position) and maps v to w.

Codes with the above property are called distance-invariant.

Dual Distance and the Strength of Matrices The dual code M⊥ of a linear code M
is another C-ary linear code of length k such that u ∈ M⊥ ⇔ ∀v ∈ M : u · vT = 0,
where · is the scalar product. The dual distance d⊥ of M is the minimum distance of
M⊥. The concept of dual distance is also defined for non-linear codes. However, in this
case the definition is based on a transformation of the average distance distribution of
the code (see [MS93] for more details).

For a code M , the following result of Delsarte provides a link between d⊥ and the
strength of M as an Orthogonal Array.

Lemma 5.3.31 Delsarte’s Theorem [HSS99, Theorem 4.9]
If M is a (not necessarily linear) C-ary code with n codewords of length k and dual
distance d⊥ then M is an OA(n, k, C, d⊥ − 1). If M is a code and an OA(n, k, C, t)
then M has dual distance d⊥ ≥ t+ 1.

Albeit originally defined for codes, Delsarte’s Theorem also applies if we generalize our
notion of a code to allow multiple instances of a codeword (with the result that the
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rows of any matrix over [C] become a C-ary code). Therefore, it provides a method to
determine the strength of a given n× k matrix M in time O(n2k): This can be done
by counting the pairwise Hamming Distances between the rows of M , determining
an average distance distribution, establishing the dual distance distribution as the
so-called McWilliams transform of the average distance distribution and reading out
d⊥ from the result (see [HSS99] Chapters 4.1/4.4 for details).

MDS codes We have already seen that a forward-stable topology T with n ≤ Ck

will maximize the minimum distance of the code MT . This distance is limited by the
Singleton Bound. Codes satisfying it with equality are called MDS codes.

Lemma 5.3.32 Singleton Bound [Bie05, Theorem 4.1]
If M is a C-ary code of length k, minimum distance d, and n codewords, then it
satisfies n ≤ Ck−d+1.

Definition 5.3.33 Maximum Distance Separable Code [MS93]
A C-ary code of length k, having Ct codewords, and minimum distance d is called
maximum distance separable (or MDS) if d = k − t+ 1.

Again, the (Extended) Reed-Solomon codes give examples of MDS codes. Furthermore,
each OA(Ct, k, C, t) M is an MDS code, since it is a code and every two codewords
have at least distance k − t+ 1. Otherwise, they would coincide in at least t positions
which is impossible in an Orthogonal Array of index 1 and strength t.

There is a long-standing conjecture about the maximum length of MDS codes. Under
a different terminology, its disputed part was first stated in [Seg55].

Conjecture 5.3.34 The MDS Conjecture [Rot06]
Let k(C, t) be the maximum length of a C-ary MDS code having Ct codewords. If C
is a prime power, it holds that

k(C, t) =



∞ , if t = 1

C + 1 , if t ∈ [C − 2] \ {1, 3}
C + 1 , if t ∈ {3, C − 1} and C is odd,

C + 2 , if t ∈ {3, C − 1} and C is even,

t+ 1 , if t ≥ C.

MDS codes not only maximize their minimum distance but also the dual distance.
The following lemma was first shown by [Sil60] and is here formulated using our
terminology.

Lemma 5.3.35 [Sil60, Lemma 2]
A C-ary MDS code with Ct codewords has strength t.
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Hence, a C-ary MDS-code with length k and Ct codewords is an OA(Ct, k, C, t) and
vice versa. It is a code with the highest possible minimum distance and the highest
possible strength (with respect to its parameters).

Corollary 5.3.36
If a C-ary MDS code with Ct codewords and length k exists, then for every t′-forward-
stable topology T ∈ T(Ct, C, k) with t′ ≥ t, the code MT is an MDS code.

Proof. This is a direct consequence of Corollary 5.3.25 and the equivalence of MDS
codes and Orthogonal Arrays, both of strength t, in the given setting.

Furthermore, every MDS code M with Ct codewords and length k is also contained in
the sets M(Ct, k, C, t′) (see Theorem 5.3.24) for k ≥ t′ > t. This follows since M is an
OA(Ct, k, C, t) of index 1 and since, due to Lemma 5.3.23, the maximum frequency of
every vector v ∈ [C]t

′
in any t′ columns of M also meets the minimum possible value

dCt/Ct′e = 1. Hence, all such MDS codes satisfy the requirement that Theorem 5.3.24
states for the matrix MT of a forward-stable topology T ∈ T(n,C, k).

Consequently, if C-ary MDS codes with Ct codewords and length k exist, their
equivalence classes under isometries from [C]k to [C]k define the complete set of
candidate matrices MT for forward-stable topologies T ∈ T(Ct, C, k).

In Appendix B, we prove that every C-ary MDS code M with Ct codewords and
length k is distance-invariant and has the same distance distribution dC,k,t(·). Based
on this, we can show that that all topologies T ∈ T(n,C, k) with the properties given
in Lemma 5.3.2 and a matrix MT listing an MDS code suffer equal forward-damage
from vector attacks coinciding with single codewords of MT .

Corollary 5.3.37
Let T ∈ T(n,C, k) be a topology with the properties given in Lemma 5.3.2 and with
MT being an MDS code. Furthermore, fix an arbitrary v ∈MT . For each attack
X ⊆ HT with ∀i ∈ [k] : |X ∩HTi | = 1 and σ(X) ⊆MT , it holds that

∀z ∈ [k] : bfT (X, z) =

k−z∑
i=0

dC,k,t(v)i.

Proof. The vector attack σ(X) contains a single codeword from MT . The damage of
X follows from Equation (5.22) and Lemma B.0.4.

However, for two arbitrary MDS codes M1 and M2 with alphabet [C], length k, and
Ct codewords, it is not guaranteed that there is an isometry φ : [C]k → [C]k with
φ(M1) = M2. Hence, there could be other attacks for which topologies T and C with
MT = M1 and MC = M2 suffer different values of forward-damage.
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On Isometry Classes of MDS Codes We have seen that if n = Ct and if MDS codes
of length k and n codewords exist, a forward-stable topology T ∈ T(n,C, k) must have
a matrix MT being such a code. However, these codes may behave differently when
considering their t′-forward-stability for t′ > t. We have also seen that we only have to
consider one representative from each equivalence class of MDS codes under isometries
from [C]k to [C]k.

It would be beneficial to show, that for certain parameters of MDS codes there is
but one such isometry class (and thus every such code has equal stability properties).
However, no non-trivial parameters with this property are known to the author.

There are considerable research results (e.g., [OD85, BBF+06]) on the isometry
classes of MDS codes. Unfortunately, these concentrate on studying equivalence classes
of linear MDS codes under (semi-)linear isometries, i.e., isometries limited to a column
permutation and a columnwise multiplication with elements of F∗C (for semilinear
isometries this is followed by a field automorphism of FC in each column). Every such
isometry φ′ : M1 →M2 between C-ary linear MDS codes M1 and M2 of same length
k and dimension t can be extended to an isometry φ : FkC → FkC of the whole space
FkC with φ(M1) = M2 (exactly the isometries we are interested in). As a result of this
research, representatives from the equivalence classes of MDS codes under (semi-)linear
isometries can be described by systematic generator matrices [OD85, BBF+06] having
a certain normalized form.

Among other things, this implies that all linear MDS codes of length k and dimension
k − 1 are in the same equivalence class under linear isometries. Thus, the same applies
to equivalence classes under isometries from FkC to FkC . However, this still does not
include non-linear MDS codes with these parameters.

New results in this field could promote our knowledge on forward-stable topologies.

5.3.4. (In-)Existence of Orthogonal Arrays and Complexity of
Finding Forward-Stable Topologies

As a result of Section 5.3.2, we know that to construct a forward-stable topology
T ∈ T(n,C, k), we have to determine the maximum value t such that an OA(n, k, C, t)

exists. Let t̂(n, k, C) be this value and let k̂(n,C, t) be the maximum value of k such
that an OA(n, k, C, t) exists.

We have shown in Corollary 5.3.11 that an OA(n, k, C, t) is also an OA(n, k, C, t− 1).
There is no OA(n, k,C, t) with k < t and we can use an OA(n, k,C, t) to obtain
an OA(n, k′, C, t) with k ≥ k′ ≥ t by dropping k − k′ columns. Consequently, the

existence of an Orthogonal Array OA(n, k, C, t) could be determined by using k̂(n,C, t)
or t̂(n, k, C), given the parameters n,C, t or n,C, k, respectively.

With this observation, both functions are related as follows:

t̂(n, k, C) = max{t ∈ [0,min(k, blogC nc)] | k̂(n,C, t) ≥ k} (5.85)

k̂(n,C, t) = max{k ∈ N | k ≥ t ∧ t̂(n, k, C) ≥ t} (5.86)

Hence, if one of them could be computed efficiently, so could the other (e.g., using

133



5. LoSS-Stability, Forward-Stability and Intersections of Successor Sets

(one-sided) binary search).
Similar to the above, we can furthermore introduce n̂(n, k,C, t) as the minimum

value n∗ ≥ n such that an OA(n∗, k, C, t) exists and define n̂(k,C, t) := n̂(0, k, C, t).
Both functions are defined for each combination of C ∈ N, k ∈ N, and t ∈ [0, k]. The

function n̂(k,C, t) can be determined from k̂(n,C, t):

n̂(k,C, t) = min{n ∈ [Ck] | k̂(n,C, t) ≥ k}. (5.87)

There are several constraints known for the existence of Orthogonal Arrays. By
definition, we must have n = λCt for some λ ∈ N. Furthermore, there are the following
general bounds, which can all be used to obtain upper bounds on k̂(n,C, t) and n̂(k, C, t).

Lemma 5.3.38 Rao bound [CD06]
An OA(λCt, k, C, t) exists only if

n ≥

{
1 +

∑t/2
i=1

(
k
i

)
(C − 1)i , if t even

1 +
∑(t−1)/2
i=1

(
k
i

)
(C − 1)i +

(
k−1

(t−1)/2

)
(C − 1)(t+1)/2 , if t odd.

Lemma 5.3.39 Bush bound [CD06]
An OA(Ct, k, C, t) with t > 1 exists only if

k ≤


C + t− 1 , if C even and t ≤ C
C + t− 2 , if C odd and 3 ≤ t ≤ C
t+ 1 , if t ≥ C.

Additionally, there is the Bose-Bush bound [CD06], which is specific for t ∈ {2, 3}, and
several bounds based on solutions of Linear Programs first introduced by Delsarte (see
[HSS99, Chapter 4.5] for details).

However, none of the identified bounds is known to be exact! Given n, C and t, they
allow us to obtain upper bounds on k̂(n,C, t), but in a very large number of cases there
is a considerable gap between all these bounds and the largest number k, such that an
OA(n, k, C, t) is actually known to exist. The same applies to n̂(k,C, t).

This is a fundamental problem in Design Theory and in [HSS99, p.32] the investigation

of better bounds for k̂(n,C, t) and n̂(k,C, t) is stated as Research Problem 2.32.
Although, since then, better bounds have been identified for special cases, the general
problem is yet unresolved.

When restricting to Orthogonal Arrays that are codes, the identification of exact
bounds would either prove or disprove the MDS Conjecture (see Conjecture 5.3.34)
in Coding Theory. It claims to specify maximum lengths for MDS codes with given
alphabet size and dimension. This conjecture stands unproven since its formulation in
1955 [Seg55] (there stated in the terminology of projective geometries).

Given the status of the existence problem of Orthogonal Arrays, it is not surprising
that also the general construction problem of Orthogonal Array is still widely unsolved.
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Research Problem 12.11 of [HSS99] asks for algorithms that can actually construct an
Orthogonal Array with given parameters, provided that such an array exists. Research
Problem 12.12 asks for time complexity bounds of such an algorithm. Given that
the inputs are n, k,C, t and that the result is an n× k matrix, it must have at least
pseudopolynomial runtime. All algorithmic approaches known to the author resort to
meta-heuristics [Gon07] and local search schemes [MFL00, Xu02, NL08].

As we have seen in Equation (5.85), these circumstances also hinder us to generally
determine t̂(n, k, C) efficiently. Consequently, we arrive at a point where both existence
and construction of forward-stable topologies, for a high number of parameter com-
binations, depend on long-standing open questions from Design and Coding Theory.
This dependency also holds from a reversed point of view. We show that solving the
Restricted Forward-Stable Topology Formation Problem is at least as hard as the
general construction problem of Orthogonal Arrays. Furthermore, the existence of a
pseudopolynomial algorithm solving it, would imply pseudopolynomial algorithms to
compute t̂(n, k, C) and k̂(n,C, t):

Theorem 5.3.40
Let O be an oracle for the Restricted Forward-Stable Topology Formation Problem.

• If one exists, an OA(n, k, C, t) can be constructed by one call to O plus O(nk)-
time post-processing.

• The function t̂(n, k, C) can be evaluated by dlog(k)e calls to O plus O(n2k)-time
post-processing.

• The function k̂(n,C, t) can be evaluated by dlog(n)e · dlog(k)e calls to O plus
O(n2k)-time post-processing per call.

Proof. By Theorem 5.3.14 and Corollary 5.3.25, there is a t-forward-stable topology
T ∈ T(n,C, k) if an OA(n, k,C, t) exists. In this case, MT must be an OA(n, k,C, t).
Given n,C, k, t as input, such a T is obtained by one call to O. The information
necessary to return the n× k matrix MT can be gathered by a traversal of all stripe
trees. This needs time O(nk).

Applying binary search, we need dlog(k)e oracle calls to determine the maximum
t′ ∈ [k] such that a t′-forward-stable topology T ∈ T(n,C, k) exists. By Corollary 5.3.25,
MT must be an OA(n, k,C, t̂(n, k,C)). Due to Lemma 5.3.31 (and the algorithm
stemming from it) we can compute the strength of MT in time O(n2k).

Using this procedure as a subroutine, we can compute k̂(n,C, t) with Equation (5.86)
and at most dlog(n)e steps in a binary search.

In this thesis, we will not be able to resolve the problem of computing t̂(n, k,C)
efficiently. Thus, in many cases it still remains unknown whether an OA(n, k,C, t)
exists (without investing huge amounts of computing resources).

The Case of Packing Arrays In Theorem 5.3.24 we have seen, that every forward-
stable topology must be a Packing Array minimizing its maximum row frequency.
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Since Orthogonal Arrays are Packing Arrays, the limits shown above also apply to
the existence problem for this generalization. Beyond that, there are scarcely any
(in-)existence results for this general class of matrices. The only results known to
the author restrict to the case t = 2 [SM02] and a table in [CD06] listing parameter
combinations for which Packing Arrays exist.

5.4. Summary

In this chapter, we have made important steps towards the general understanding of
optimally LoSS-stable and forward-stable distribution topologies. Since LoSS- and
FEC-LoSS-damage of an attack do not differ on topologies of depth at most 2, the
results are also relevant for the minimization of FEC-LoSS-damage.

The findings of this chapter were published in [Gra12]
In Section 5.1, we defined optimally LoSS-stable topologies and determined their

basic properties. In the subsequent Section 5.2, we analyzed the LoSS-damage function.
In particular, we demonstrated that LoSS-damage can be seen as a superimposition
of two different types of damage: the direct damage and the forward-damage. For
topologies with n� Ck nodes, the latter dominates the LoSS-damage measure. Based
on this observation, we defined forward-stable topologies, minimizing the maximum
possible forward-damage for every choice of attack parameters. In the following
Section 5.3, we focused on the study of these topologies.

In Subsection 5.3.1, we identified first necessary requirements and made sure that
they do not impede the construction of optimally LoSS-stable topologies. The forward-
stability of topologies satisfying these requirements is characterized by the forward
successor sets of their heads. In Subsection 5.3.2, we introduced a matrix repesentation
for these sets. We proved that, for forward-stable topologies, these matrices must be
Orthogonal Arrays resp. Packing Arrays with a minimum maximum subrow frequency.
Furthermore, we could show that Orthogonal Arrays of strength t guarantee t-forward-
stable topologies.

For peer numbers n ≤ Ck, Subsection 5.3.3 then interpreted these matrices as
error-correcting codes. Thereby, we could transfer results from Coding Theory to our
study of forward-stable distribution topologies. We saw that if there is a C-ary MDS
code with Ct codewords and length k, every forward-stable topology T ∈ T(Ct, C, k)
must have a matrix MT whose rows list such a code.

We pointed out that the isometry classes of the studied matrices (and codes) can be
used to categorize their suitability to construct forward-stable topologies. In particular,
for C-ary MDS codes of Ct codewords, codes from different isometry classes may lead
to different values of maximum forward-damage from attacks on heads in more than
t stripes. Therefore, we briefly reviewed the available research results on isometry
classes of MDS codes. However, albeit there are a number of relevant results in the
literature, we could not use them to find non-trivial parameters for which only a single
such isometry class exists.

Since the matrix MT of a forward-stable topology T must be an Orthogonal Array
of maximum strength, Subsection 5.3.4 studied extremal parameter combinations for
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Orthogonal Arrays. We saw that the problem of determining the existence of Orthogonal
Arrays for arbitrary parameters is an unsolved problem in Design Theory. In particular,
its special case – the MDS Conjecture – stimulates (not only) coding theorists since
1955. We proved that efficiently finding (t-)forward-stable topologies in arbitrary classes
T(n,C, k) would also allow to efficiently solve the aforementioned problems. Due to
this reason, such an efficient construction currently remains unknown.

Incompatibilities with Cluster Topologies and Rule-Based Topologies With the
obtained results, we have to realize that the requirements for both the Cluster Topologies
and the rule-based topologies of Chapter 4 can prevent the construction of forward-stable
topologies.

In a Cluster Topology T ∈ T(n,C, k), the matrix MT will contain only C different
types of row vectors. In particular, all dn/Ce resp. bn/Cc rows corresponding to nodes
of the same cluster have the same entries, since all these nodes have the same preceding
heads. Consequently, for a Cluster Topology with k > 1, the matrix MT will not satisfy
the requirements given in Theorem 5.3.24.

For rule-based topologies, the requirements of Head Rule 2 can lead to negative
effects by creating highly dependent groups of heads. This phenomenon especially
appears in topology classes T(n,C, k) with n mod C = 1. Here, the head topology of
a rule-based topology T will contain k heads that pairwise supply each other. These
are the heads with δC,k1 = dn/Ce+ k − 1 successors. They share a common row vector
in MT . If n < k · Ck, the frequency k of this row vector can be too high to form
topologies meeting the demands given in Theorem 5.3.24.

However, in contrast to the Cluster Topologies, the deviation from optimal matrices
MT is limited. The maximum row frequency is increased by at most k − 1 and does
not grow with n. The deviation occurs only for rows corresponding to head nodes and
can be compensated if n ≥ k · Ck.

Figure 5.10 gives an example for the described incompatibilities. It shows represen-
tative topologies from T(9, 2, 3). In this class, all Cluster Topologies and rule-based
topologies have a layout similar to the topologies T1 and T2, respectively. For z = 2
and x = 2, a worst-case attack on all shown topologies is given by X = {4, 6}. It leads
to forward-damage of bfT1(X, 2) = 5, bfT2(X, 2) = 4, and bfT3(X, 2) = 3, respectively.
Thus, neither T1 nor T2 can be forward-stable.

The Cluster Topologies also conflict with optimal LoSS-stability. This is caused
by the fact that their massive deviations from optimal forward-damage cannot be
compensated by direct damage. Again, Figure 5.10 provides an example. Considering
LoSS-damage, for z = 2 and x = 2, a worst-case attack on both T1 and T3 is X = {4, 6}.
It leads to LoSS-damage of bT1(X, 2) = 5 and bT3(X, 2) = 4. Thus, T1 cannot be
optimally LoSS-stable in T(9, 2, 3).

For rule-based topologies, the compatibility with LoSS-stability is unknown. In
particular, it is possible that the limited deviations from optimal values of forward-
damage can always be compensated by the influence of direct damage. Again, such an
effect can be seen in Figure 5.10, where the maximum LoSS-damage for x = 2 and
z = 2 is 4 on both T2 and T3. It is achieved by attack X = {4, 6}.
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T1
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(a) Cluster Topology T1 1 1 1 1 2 2 2 2 2
1 1 1 1 2 2 2 2 2
1 1 1 1 2 2 2 2 2


(b) MT1

T
for σ1(1) = σ2(2) = σ3(3) = 1 and σ1(4) = σ2(5) = σ3(6) = 2.
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(c) Rule-based topology T2 1 1 1 2 2 2 1 2 2
1 1 1 2 2 2 2 1 2
1 1 1 2 2 2 2 2 1


(d) MT2

T
for σ1(1) = σ2(2) = σ3(3) = 1 and σ1(4) = σ2(5) = σ3(6) = 2.
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1 5 7

6

2 4 8 9

(e) Alternative topology T3 1 1 1 1 2 2 2 2 2
1 1 2 2 1 1 2 2 2
1 2 1 2 1 2 1 2 2


(f) MT3

T
for σ1(1) = σ2(5) = σ3(3) = 1 and σ1(8) = σ2(4) = σ3(6) = 2.

Figure 5.10.: Example that Cluster Topologies and rule-based topologies are not forward-
stable in T(9, 2, 3). Note the high frequencies of particular row vectors in
MT1 and MT2 .
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Open Problems We see that, despite our advancements, a number of questions are
still unresolved. For the study of forward-stable topologies, most of them originate from
Design and Coding Theory. As we have already pointed out, one of the hardest seems
to be the existence problem of Orthogonal Arrays. However, the following problems
are also relevant:

• Theorem 5.3.24 demonstrates that the matrix MT of a forward-stable topology
T ∈ T(n,C, k) must satisfy MT ∈

⋂
t∈[k] M(n, k,C, t). However, we do not

know whether this intersection is always non-empty. To obtain an answer, the
intersections between the classes of Packing Arrays with minimum maximum
subrow frequency have to be studied.

If non-emptiness is proven (as for MDS codes), we can study the vulnerability
of topologies T with MT ∈

⋂
t∈[k] M(n, k,C, t). Here, first steps were made in

Subsection 5.3.3. However, we do not yet have an exact characterization of MDS
codes that are suitable to build forward-stable topologies.

• For the construction of forward-stable topologies with arbitrary peer numbers,
we need Orthogonal Arrays and Packing Arrays with arbitrary row number. In
this context, it would be interesting to know whether for all parameters n, k, C, t
there is an OA(n̂(n, k, C, t), k, C, t) that can be decomposed into bn/Ckc copies of
[C]k and a single copy of a code M . If this was confirmed, the existence problem
could be solved by studying only existence conditions of codes.

Although forward-stable topologies closely approximate optimally LoSS-stable topolo-
gies with many peers, both classes could considerably differ for small values of n. This
especially applies to head topologies. Hence, an exact characterization of optimally
LoSS-stable topologies is desireable. For this, new techniques of analysis have to be
found. In particular, a direct adoption of the matrix repesentation used to analyze
forward-stable topologies is not possible, since it heavily relies on the one-stripe-only
property and the definition of forward successor sets.

Heuristics for Distributed Topology Management Last but not least, the insights
we already obtained about forward- and LoSS-stable topologies should be incorporated
into the existing heuristics of distributed topology construction mechanisms. Here,
empirical studies show, that the local-cost-based system of [BSS09] already gives
practical approximations for the one-stripe-only property and the successor number
limitations of Lemma 5.3.2 (cmp. Section 4.5). However, the important aspect of
controlling the intersections of the heads’ (forward) successor sets is still unaddressed.
This is an extremely challenging task since in common systems even the heads only
know the cardinality of their successor sets and the identities of their children.

Increasing the topology knowledge of peers is mostly impractical, especially for
scaling and security reasons (see, e.g., [BFGS09a]). Hence, it is necessary to make
use of more indirect control factors. A key role might fall to the bootstrapping server
of the streaming system which essentially assigns initial positions of newly joining
nodes (afterwards they evolve due to topology dynamics). These decisions must be
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based on an estimation of the current heads’ (forward) successors sets. However, the
storage and maintainance of this information poses the same scaling problem as before.
Until better strategies are found, the purely random assignment of initial predecessors,
in combination with continuous tree balancing operations, seems to be a reasonable
solution. Albeit it is far from optimal, it makes very large intersections of heads’
successor sets at least improbable.

Despite all the problems that arise when trying to implement optimally LoSS- or
forward-stable topologies in real-world streaming systems, it nonetheless promises to
result in highly improved stability properties. This is supported by the observations
in [Gum11], where forward-stable topologies (in this context called ‘mixed’) were
empirically compared with samples of other established topology classes. Through
all tested attack parameter combinations, the forward-stable topologies proved to
suffer considerably lower LoSS-damage than the second-best tested topologies (being
optimally LiSS-stable topologies from Chapter 4 and topology snapshots of the running
system [BSS09]).
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In the Chapters 4 and 5, we have considered topology formation problems with a
focus on attack-stability. In particular, we have sought topologies that minimize the
maximum damage of deliberate and well-planned attacks. The main difference between
the goals of both chapters lay in the damage function that was applied.

For a more complete view on topology stability, we now want to deviate from the
worst-case assumptions made in the previous chapters. Instead of studying targeted
attacks, we will consider damages that occur due to random node failures. Since
peer-to-peer-based streaming systems rely on undependable end-hosts that frequently
leave the system without warning (so-called ungraceful exits), many authors consider
this kind of damage as the most severe stability problem. This is reflected by the
fact, that the vast majority of research on stability and resilience of peer-to-peer live
streaming systems is concerned with approaches to cope with this constant loss (and
re-joining) of nodes, e.g., [TJ07, TWSN08, DF10, LCC+11]. Additionally, nearly all
of the resilience evaluations of the peer-to-peer live streaming systems mentioned in
Section 2.1.3 focus on this kind of topology damage.

In the following, Section 6.1 will establish and motivate our model of random
failures and their consequences on the streaming system. In particular, we combine the
established LiSS-damage measure of counting lost source-to-peer paths with a random
process choosing the failing nodes. Topologies minimizing the expected LiSS-damage of
such failures are called random-failure-stable. Then, Section 6.2 identifies the random-
failure-stable topologies in topology classes having only a single stripe tree. These
results are extended in Section 6.3, where we will quantify the expected packet loss on
arbitrary distribution topologies. It is determined by a weighted sum of individual node
depths in all stripe trees. This observation will lead to the identification of sufficient
conditions for random-failure-stable topologies. Additionally, we demonstrate that
there are non-empty topology classes in which no random-failure-stable topologies
exist. The section closes with an overview on topology classes for which random-failure-
stable topologies are simple to construct. In contrast, we will show in the subsequent
Section 6.4, that the problem of finding random-failure-stable topologies in a given
topology class is strongly NP-complete, in general.

6.1. Random Failures and Failure-Stability

Following the discussion in Section 2.2.2, we consider topologies at a fixed snapshot
in time and disregard topology dynamics. Furthermore, we focus on the study of
topologies in the classes of bandwidth-restricted distribution topologies as given in
Definition 2.2.5.
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In contrast to the deterministic worst-case attacks studied so far, determining topology
stability with regard to random node failures requires the introduction of a probabilistic
model. In the considered scenario, a topology T ∈ T(n, c, k) and a number x ∈ [n] are
given, and a set X ⊆ V of failing nodes with |X| = x is chosen by a random process.

For peer-to-peer live streaming systems, a number of approaches were proposed to
measure individual node reliability, i.e., the probability of not failing in a given time
interval. Usually, they are combined with techniques aiming to bring only reliable
nodes into important positions of the distribution topology. A survey of reputation
systems that can be used for such approaches is given in [MGM06]. The authors
of both [TJ07] and [TWSN08] propose topology management protocols considering
measured node reliability. However, they restrict to single-tree topologies and evaluate
their approaches using simulation studies, but without formal analysis. In [LCC+11], a
topology formation problem is formulated as an Integer Linear Program. It is then
used to infer parent selection rules to cope with topology dynamics. In general, the
results in this line of research do not include formal analysis on failure-stable multitree
distribution topologies.

In this thesis, we will assume that each subset of failing nodes is chosen with equal
probability. Although this is an abstraction from reality, it is a good starting point
giving important insights on the problem of finding topologies that are stable towards
random failures. Furthermore, our general approach is transferable to other probability
distributions. However, the arising stability requirements may change in dependency
on the distribution used.

Given a topology T ∈ T(n, c, k) for which X ⊆ V with |X| = x is chosen by the
random process, let us introduce a random variable ATx,v(X) for each node v ∈ V :

ATx,v(X) := |{i ∈ [k] | v ∈ succTi (X)}| = k − incX(v). (6.1)

Furthermore define

ATx (X) :=
∑
v∈V

ATx,v(X) (6.2)

=
∑
v∈V

∑
i∈[k]

|succTi (X) ∩ {v}| (6.3)

=
∑
i∈[k]

∑
v∈V
|succTi (X) ∩ {v}| (6.4)

=
∑
i∈[k]

|succTi (X)| = aT (X). (6.5)

The random variable ATx (X) quantifies the LiSS-damage for a failing set X of size x
chosen by the random process. Consequently, the expected value E(ATx ) will be called
the expected packet loss for x failing nodes, or, for short, the expected damage. The
sequence (E(AT1 ), . . . ,E(ATn )) can be used to measure the stability of topologies against
random failures:
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6.2. Failure-Stability of a Single Stripe Tree

Definition 6.1.1 Random-Failure-Stable Topologies
For x ∈ [n], a distribution topology T ∈ T(n, c, k) is called x-random-failure-stable
in T(n, c, k), if

∀C ∈ T(n, c, k) : E(ATx ) ≤ E(ACx).

A distribution topology T ∈ T(n, c, k) is called random-failure-stable in T(n, c, k), if
it is x-random-failure-stable for all x ∈ [n].

Again, we can define a corresponding topology formation problem.

Definition 6.1.2 (x-)Failure-Stable Topology Formation Problem
Given n, k ∈ N and an appropriate capacity function c, the (x-)Failure-Stable
Topology Formation Problem consists in finding an (x-)random-failure-stable topology
T ∈ T(n, c, k) or in determining that none exists.

Under the reasonable assumptions that c is represented as vector of (n+ 1) entries
and that k is polynomial in n, the output length (the binary representation of a
topology from T(n, c, k), e.g., an n× k-matrix of predecessors) of these problems will
be polynomial in the length of the input. Thus, the existence of polynomial-time
algorithms is not impossible. This distinguishes formation problems of topologies in
T(n, c, k) from the formation problems of topologies in T(n,C, k).

We will see in Section 6.3 that every non-empty class T(n, c, k) contains an x-random-
failure-stable topology T for every value of x ∈ [n] (though it may be NP-hard to find it).
However, there exist non-empty topology classes without globally random-failure-stable
topologies.

In the following, we will characterize the (x-)random-failure-stability of a topology
by the number of nodes in its different depth levels. At first, we will study and identify
random-failure-stable distribution topologies that consist of a single stripe tree. These
results are then generalized to arbitrary topologies. Although the random-failure-stable
topologies found in Sections 6.2 and 6.3 are quite intuitive, Section 6.4 will prove that
the task of forming an (x-)random-failure-stable topology in arbitrary class T(n, c, k) is
indeed an NP-complete problem (for x ≤ n− 2).

6.2. Failure-Stability of a Single Stripe Tree

In topology classes with k = 1, every topology T ∈ T(n, c, k) consists of only a single
stripe tree. Under these premises, we can transform the expected packet loss as shown
below. Note that H(k | N ;M ;n) =

(
m
k

)(
N−M
n−k

)
/
(
N
n

)
is the probability mass function of

the hypergeometric distribution.

E(ATx ) =
∑
v∈V

E(ATx,v) (6.6)

=
∑
v∈V

Pr(ATx,v = 1) (6.7)
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=
∑
v∈V

(1−H(0 | n; d(v);x)) (6.8)

= n−
d(T )∑
i=1

H(0 | n; i;x) · |Li(T )| (6.9)

= n− (n− x)!

n!

n−x∑
i=1

(n− i)!
(n− i− x)!

· |Li(T )| (6.10)

Here, the step from Term (6.6) to (6.7) follows from the fact that k = 1.
Using H(0 | n; d(v);x), we can express the probability that, after the failure of x out

of the n nodes with equal probability, none of v’s d(v) predecessors besides the source
has failed. The transformation from Term (6.7) to (6.8) uses exactly the complementary
event. From Term (6.9) to (6.10), we replaced H(0 | n; i;x) with its definition and
resolved the binomial coefficients. Furthermore, we used the facts that H(0 | n; i;x) = 0
for i ∈ [n− x+ 1, n] and that |Li(T )| = 0 for i > d(T ).

We find that random-failure-stable topologies with k = 1 minimize the average node
depth, since E(AT1 ) has exactly this value.

E(AT1 ) =
∑
v∈V

(1−H(0 | n; d(v); 1))

=
∑
v∈V

(
1− n− d(v)

n

)
=

1

n

∑
v∈V

d(v)
(6.11)

As another interesting observation, we also see that actual successor relationships
have no influence on the value of expected damage. In particular, if two trees have
an equal distribution of node numbers to node depths, they have the same expected
packet loss, no matter how unbalanced one of them may be.

Now take a closer look at Equation (6.10). The values n and x cannot be influenced
by the topology construction. Hence, we see that the variable part is a weighted sum
over the number of nodes in the different depth levels of the tree T . We can deduce a
sufficient condition on random-failure-stable topologies consisting of just a single tree.
It coincides with the intuitive approach to build the topology tree “as flat as possible”.

Lemma 6.2.1
If there is a topology T ∈ T(n, c, 1) that satisfies

∀C ∈ T(n, c, 1) ∀i ∈ [d(T )− 1] : |Li(T )| ≥ |Li(C)|, (6.12)

then the compliance with Property (6.12) is a necessary and sufficient condition for
random-failure-stable topologies in T(n, c, 1).

Proof. For each x ∈ [n], let the sequence wx1 , . . . , w
x
n−x be given by wxj := (n−j)!

(n−j−x)! for

j ∈ [n− x]. It holds that ∀j ∈ [n− x− 1] : wxj > wxj+1 > 0.

All topologies T ∈ T(n, c, 1) with Property (6.12) maximize the term
∑n−x
j=1 w

x
j |Lj(T )|
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6.2. Failure-Stability of a Single Stripe Tree

for all values of x ∈ [n]. Thus, due to Equation (6.10), they minimize E(ATx ) for all
x ∈ [n] and are random-failure-stable.

Now, assume that such a T exists and that C ∈ T(n, c, 1) violates Property (6.12).
It must hold that d(T ) ≤ n − 1 and d(C) ≤ n. Furthermore, there is depth

i < d(T ) such that
∑i
j=1 |Lj(T )| >

∑i
j=1 |Lj(C)|. Since

∑n−1
j=1 |Lj(T )| = n and∑n−1

j=1 |Lj(C)| ∈ [n− 1, n], we obtain

n−1∑
j=i+1

|Lj(C)| ≥ n− 1−
i∑

j=1

|Lj(C)| ≥ n−
i∑

j=1

|Lj(T )| =
n−1∑
j=i+1

|Lj(T )| (6.13)

and
i∑

j=1

|Lj(T )| −
i∑

j=1

|Lj(C)| ≥
n−1∑
j=i+1

|Lj(C)| −
n−1∑
j=i+1

|Lj(T )|. (6.14)

This leads to

E(AC1 )− E(AT1 ) =
(n− 1)!

n!

n−1∑
j=1

w1
j · |Lj(T )| −

n−1∑
j=1

w1
j · |Lj(C)|

 (6.15)

=
(n− 1)!

n!

 i∑
j=1

w1
j (|Lj(T )| − |Lj(C)|) +

n−1∑
j=i+1

w1
j (|Lj(T )| − |Lj(C)|)

 (6.16)

≥ (n− 1)!

n!

w1
i

i∑
j=1

(|Lj(T )| − |Lj(C)|)− w1
i+1

n−1∑
j=i+1

(|Lj(C)| − |Lj(T )|)

 (6.17)

> 0. (6.18)

Thus, C is not 1-random-failure-stable and not random-failure-stable.

Failure-stable Trees Clearly, without any node degree restrictions, a source-rooted
star will always be the only random-failure-stable topology consisting of one tree.
However, also in the presence of capacity restrictions, the formation of a topology T
complying with the Property (6.12) is always possible if T(n, c, 1) is non-empty. This
can be done using the greedy approach of iteratively assigning the nodes V in order of
non-increasing capacity to a free tree position with smallest depth. This way, the depth
levels are filled consecutively. In particular, in each but the last level the capacity of
nodes in the former level is fully utilized while the capacity for nodes in the next depth
level is maximized. It is possible to deviate from the node order in the last two depth
levels, as long as the capacity of all nodes in the other levels is exhausted [Rö10].

Note that many peer-to-peer streaming systems that build only a single distribution
tree intuitively rely on the tree topologies sketched above. For example, one of the
three basic design principles of FatNEMO [BLB+04] is that “higher degree nodes should
be placed higher up in the tree”. Other approaches which explicitely aim at building
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6. Random-Failure-Stability

“short and wide” trees are [PWCS02] and [GA04].

Additionally, the authors of [TJ07] introduce a random model for failure stability
which is similar to ours and advise to build bandwidth-ordered trees after conducting a
simulation study on the model.

Since we have seen that every non-empty class T(n, c, 1) contains a tree with Prop-
erty (6.12), we obtain the following corollary.

Corollary 6.2.2
A distribution topology T ∈ T(n, c, 1) is random-failure-stable if and only if it has
Property (6.12).

In the following section, we will generalize these results to multitree topologies.
However, we will see that the existence of random-failure-stable topologies is no longer
guaranteed for k > 1.

6.3. Failure Stability of Distribution Topologies

Due to the linearity of expectation, we can lead back the expected packet loss on
arbitrary distribution topologies to that of their stripe trees:

E(ATx ) =
∑
v∈V

E(ATx,v) (6.19)

=
∑
v∈V

∑
Tj∈T

E(ATjx,v) (6.20)

=
∑
Tj∈T

E(ATjx ) (6.21)

= kn−
d(T )∑
i=1

H(0 | n; i;x)
∑
Tj∈T

|Li(Tj)| (6.22)

= kn−
d(T )∑
i=1

H(0 | n; i;x)|Li(T )| (6.23)

= kn− (n− x)!

n!

n−x∑
i=1

(n− i)!
(n− i− x)!

· |Li(T )| (6.24)

Consequently, the value E(ATx ) corresponds to kn minus a weighted sum of individual
node depths in the trees of T . For each fixed value of x ∈ [n], the weight factors
for each depth are fixed, too. Hence, there will always be a topology T ∈ T(n, c, k)
minimizing E(ATx ) by having an optimal depth distribution for these weights.

We can generalize Lemma 6.2.1 to arbitrary k.
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Figure 6.1.: Example topologies T1,T2 ∈ T(5, c, 2) with c(s) = 2, c(1) = 4 and c(v) = 1
for v ∈ [2, 5].

Lemma 6.3.1
If there is a distribution topology T ∈ T(n, c, k) that satisfies

∀C ∈ T(n, c, k) ∀i ∈ [d(T )− 1] : |Li(T )| ≥ |Li(C)|, (6.25)

then the compliance with this property is a sufficient and necessary condition for
random-failure-stable topologies in T(n, c, k).

The proof is analogue to that of Lemma 6.2.1, but is referencing Equation (6.24).
Note that topologies with Property (6.25) would also be optimal for other probability

distributions of node failure, as long as the probability that a node’s predecessor
(including the node itself) has failed is a monotonously increasing function depending
only on the node’s depth.

In contrast to the case k = 1, for k > 1 the existence of topologies with Property (6.25)
is no longer guaranteed. An example is given by the class T(5, c, 2) with c(s) = 2,
c(1) = 4 and c(v) = 1 for v ∈ [2, 5]. Since the source can support exactly one head
per stripe, all topologies in T(5, c, 2) have the same number of heads. To maximize
the number of nodes in depth level two, we have to use two different heads, one of
which must be the node 1. Since the remaining nodes have equal capacities, any can
be adopted as second head. Topology T1 in Figure 6.1 has these properties. However,
such a one-stripe-only assigment of heads prevents the second stripe to fan out near
the source. Consequently, it forces T1 to become very deep, with few peers in its
deeper levels. In contrast, topology T2 in Figure 6.1 only has depth 3 and it holds
that |L3(T1)| ≤ |L3(T2)|. Hence, in T(5, c, 2) the maximization of the depth levels 2
and 3 are conflicting goals. Since T(5, c, 2) does not contain topologies of depth 2, no
topology in this class has Property (6.25).

The lack of such topologies can lead to the inexistence of random-failure-stable
topologies. Let T(n, c, k) be a non-empty class without a topology having Property (6.25)

and let d̂ = minT ∈T(n,c,k) d(T ). Then there have to be a, b ∈ [n] with a < b ≤ d̂ and
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6. Random-Failure-Stability

topologies Ta, Tb ∈ T(n, c, k) maximizing the number of nodes in either depth a or
b. Depending on the depth distributions of Ta and Tb, and the proportions of the
elements of sequence (H(0|n; i;x))i∈[n−x] for different x, it is then possible that Tb is
(n− b)-random-failure-stable while Ta is not, even though Tb has less nodes in depth
level a.

Again, Figure 6.1 gives an example. For x = 3, only the depth levels one and two
determine the expected packet loss of a topology in T(5, c, 2) (cmp. Equation (6.24)).
The depicted topology T1 and all other topologies with its depth distribution are
3-random-failure-stable in T(5, c, 2) (e.g., E(AT1

3 ) = 8.7 vs. E(AT2
3 ) = 8.8). However,

its depth makes T1 suboptimal for x = 1. Here, topology T2 is a 1-random-failure-stable
topology (e.g., E(AT1

1 ) = 4.8 vs. E(AT2
1 ) = 4.4).

Random-Failure-Stable Topologies for Special Topology Classes There are a num-
ber of classes T(n, c, k) where random-failure-stable topologies are easy to find. If
c(s) ≥ kn, a topology of star-like stripe trees rooted at s is optimal due to Lemma 6.3.1.
Furthermore, if c(s) < kn and only the source has limited capacity, each topology with
fully exhausted source capacity and maximum depth 2 will be optimal.

Classes with higher practical relevance have a common capacity value D for all
peers V . Under the assumption that T(n, c, k) 6= ∅, it is then possible to use complete
D-ary subtrees rooted at the c(s) heads. This maximizes the number of nodes in each
but the last level of all subtrees. Distributing the number of heads among the stripes
as equal as possible (i.e., ∀i ∈ [k] : bc(s)/kc ≤ |L1(Ti)| ≤ dc(s)/ke), we then obtain a
topology with depth dlogD(dn/bc(s)/kce · (D − 1) + 1)e that satisfies Property (6.25).

Related Work: Enabling Forward Error Correction The authors of [DF10] give a
highly detailed and complex probabilistic model of the packet loss in distribution
topologies when Forward Error Correction encoding is applied. Then, they introduce
extensive, simplifying assumptions and evaluate their model by simulation. In contrast
to our results without Forward Error Correction, their simulations indicate that FEC
mechanisms additionally profit from nodes whose depth has only limited (e.g. constant)
deviations between the stripe trees. This is somewhat suprising since such a topology
layout disagrees with Property (6.25) in many topology classes. An analytical investi-
gation of this phenomenon and the determination of optimal trade-offs promises to be
an interesting direction for future research.

6.4. Complexity of Finding Random-Failure-Stable
Topologies

Although the failure-stable topologies identified in the Sections 6.2 and 6.3 had quite
an intuitive layout, we now show that the Failure-Stable Topology Formation Problem
and most of its x-restricted versions are NP-complete in general.
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Theorem 6.4.1
The Failure-Stable Topology Formation Problem is NP-hard.

Proof. To prove NP-hardness, we will use a polynomial-time reduction from the
strongly NP-complete problem 3-Partition ([GJ79] problem SP15).

Definition 6.4.2 3-Partition
Given a weight vector (a1, . . . , aw) with w = 3m, m,A ∈ N, ai ∈ N, and∑

1≤i≤w ai = A ·m, decide whether a partition of [w] into sets J1, . . . , Jm exists,
such that ∀i ∈ [m] :

∑
j∈Jm aj = A.

The 3-Partition problem remains NP-complete when we restrict the values ai such
that A/4 < ai < A/2, thus enforcing ∀i ∈ [m] : |Ji| = 3 [GJ79]. Since it is strongly
NP-complete, we can also restrict A to be upper bounded by a polynomial in w without
losing NP-completeness. In the following we assume that both these restrictions apply.

Given a weight vector (a1, . . . , aw), the reduction function f produces an instance of
the Failure-Stable Topology Formation Problem with topology class T(3 + 2A, c,m)
(i.e., V = [3 + 2A]) and capacity function

c(v) =


w , if v = s

2av , if v ≤ w
1 , else.

(6.26)

Under the above restrictions, computing this mapping and returning c in a pair-wise
representation needs time at most polynomial in the length of the input (a1, . . . , aw).

Define Vw := [w] and let D := [3+2A]\Vw be the set of dummy nodes. The instances
constructed by f have the following property:

Claim 6.4.3
There is a 3-Partition J1, . . . , Jm for weight vector (a1, . . . , aw) if and only if a
solution T for the Failure-Stable Topology Formation Problem on f((a1, . . . , aw))
exists and satisfies

∀Ti ∈ T : |L2(Ti)| = 2A.

Proof. “Only-If”: Assume that the 3-Partition solution J1, . . . , Jm exists. Then a
topology T ∈ f((a1, . . . , aw)) can be built with HTi = Ji for i ∈ [m] in which, per
stripe Ti ∈ T , all 2A remaining nodes V \ HTi form the second depth level. Since
∀i ∈ [m] :

∑
v∈Ji c(v) =

∑
v∈Ji 2av = 2A, the capacity of the heads allows such a

construction in each stripe. See Figure 6.2 for an example. Since the source capacity
c(s) = w is utilized completely, the maximum possible number of nodes reside in
depth level 1. Furthermore, it holds that d(T ) = 2. Due to Lemma 6.3.1, T must be
random-failure-stable in f((a1, . . . , aw)).

“If”: Assume that a random-failure-stable topology T for f((a1, . . . , aw)) has 2A nodes
of depth 2 per stripe. This requires nodes in depth level 1 with a capacity sum of at least
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Figure 6.2.: A random-failure-stable topology in f((a1, . . . , a6)) for 3-Partition input
(a1, . . . , a6) = (2, 2, 2, 3, 3, 4) with A = 8 and a 3-Partition J1 = {2, 3, 3},
J2 = {2, 2, 4}.

k · 2A = m · 2A =
∑
u∈Vw c(u). Since c(s) = w = |Vw| and ∀u ∈ Vw, v ∈ D : c(u) > c(v),

we must have HT = Vw and the stripe head sets HTi must be a partition of Vw.
Additionally, the heads of each stripe must have exactly capacity 2A. Otherwise, due
to the total capacity of m · 2A, there would be a stripe with capacity less than 2A.
This would contradict our assumptions about T . Hence, by definition of c, the sets
Ji := HTi for i ∈ [m] are a 3-Partition solution for (a1, . . . , aw).

Finally, let us show, that if any random-failure-stable topology T for f((a1, . . . , aw))
has ∀Ti ∈ T : |L2(Ti)| = 2A, then every random-failure-stable topology in f((a1, . . . , aw))
has this feature. For this, assume that C ∈ f((a1, . . . , aw)) is random-failure-stable and
has a stripe j without 2A nodes in depth 2. Due to Lemma 6.3.1 and the existence of
T , topology C must have w nodes in depth level 1, must have depth 2, and furthermore
have |L2(C)| = m2A. W.l.o.g. we can assume that stripe j has |L2(Tj)| > 2A. Then, it
holds that |HTj | ≤ 2 with

∑
v∈HTj

c(v) > 2A. However, this is a contradiction with our

assumption that ∀i ∈ [w] : A/4 < ai < A/2.

Now study the complexity of the x-Failure-Stable Topology Formation Problem. For
x = n, all n nodes fail. Consequently, all topologies in a class T(n, c, k) are n-random-
failure-stable. For x = n − 1, due to Equation (6.24), every topology maximizing
|L1(T )|, i.e., completely utilizing the source capacity, is (n− 1)-random-failure-stable.
Hence, if k is polynomial in n, the x-Failure-Stable Topology Formation Problem for
x ≥ n− 1 is in P.

We have seen in Claim 6.4.3 that there is a 3-Partition for (a1, . . . , aw) if and only
if there is a random-failure-stable topology T in f((a1, . . . , aw)) that has 2A nodes in
depth level 2 of each stripe. By definition, such a topology T is also x-random-failure-
stable for all x ∈ [n].

Furthermore, the proof of Claim 6.4.3 has shown that the head sets of every topology
in f((a1, . . . , aw)) that has the maximum possible number of w nodes in depth 1 and
the maximum possible number of m · 2A nodes in depth level 2 induce a 3-Partition
of (a1, . . . , aw). Since, for x ∈ [n − 2], these are also the x-random-failure stable
topologies in f((a1, . . . , aw)) (again cmp. Equation (6.24)), the complexity result
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of Theorem 6.4.1 also applies to the x-Random-Failure-Stable Topology Formation
Problem with x ≤ n− 2.

Corollary 6.4.4
The x-Failure-Stable Topology Formation Problem is NP-hard for x ∈ [n− 2].

Furthermore, each x-Failure-Stable Topology Formation Problem has a corresponding
NPO problem (see Definition 3.2.4): The input set is given by the set of all possible
classes T(n, c, k), possible solutions are topologies from these classes, and membership
in a class can be checked by an O(kn)-time tree traversal. The value of a solution T is
E(ATx ) · n!

(n−x)! and can be checked in polynomial time. Note that the factor n!
(n−x)! is

used to scale E(ATx ) to a natural number. This is necessary to satisfy the requirements
on a value funtion. Finally, the optimization goal is a minimization. The search version
looking for an optimal solution to this NPO problem is the x-Failure-Stable Topology
Formation Problem.

If restricted to topology classes T(n, c, k) in which random-failure-stable topologies
exist, the Failure-Stable Topology Formation Problem has a similar corresponding NPO
problem: The input set consists of all topology classes in which random-failure-stable
topologies exist, solutions are topologies from the input class and their membership
in the class can be checked in polynomial time. The value of a solution T is given by∑n
x=1E(ATx ) · n!

(n−x)! . Again, the optimization goal is a minimization. Since random-

failure-stable topologies minimize E(ATx ) for all values of x ∈ [n], they are exactly the
optimal solutions to this optimization problem.

Corollary 6.4.5
Each x-Failure-Stable Topology Formation Problem with x ∈ [n−2] is NP-complete.
The Failure-Stable Topology Formation Problem on topology classes containing
random-failure-stable topologies is NP-complete.

6.5. Summary

In this chapter, we deviated from the approach of the former chapters by not taking a
worst-case viewpoint on topology stability. Instead, we considered the expected packet
loss on a topology, when the failing node sets are chosen by a random process.

Assuming a uniformly distributed failure probability, we defined x-random-failure-
stable topologies as the topologies minimizing the expected packet loss for x failing
nodes. If a topology is x-random-failure-stable for all values of x ∈ [n], it was called
random-failure-stable.

In Section 6.2, we then identified all random-failure-stable topologies in topology
classes allowing only a single stripe. Building on these results, in Section 6.3, we
characterized the expected packet loss on multitree topoplogies. Its value is determined
by a weighted sum of node depths over all stripes of a topology. We identified sufficient
requirements for random-failure-stable topologies, but also highlighted that there are
non-empty topology classes without random-failure-stable topologies. In these classes,
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the sets of x-random-failure-stable topologies for different values of x ∈ [n] do not
intersect.

After a short review of topology classes in which random-failure-stable topologies are
easy to find, we contrasted in Section 6.4 by proving that it is actually an NP-hard
problem to find random-failure-stable topologies for arbitrary given bandwidth-restricted
topology classes.

Since it holds that

E(AT1 ) =
∑
Ti∈T

E(ATi1 ) =
1

n

∑
v∈V

∑
Ti∈T

dTi(v), (6.27)

1-random-failure-stable and random-failure-stable topologies are always the topologies
in T(n, c, k) having a minimum average node depth. Since node depth is typically
proportional to the delay of the streaming data when it arrives at a node, our complexity
results are equally relevant in situations where not random-failure-stability but efficiency
and quality of the streaming service are the central optimization goals.

Finally, note that it is thinkable to interprete the (x-)Failure-Stable Topology Forma-
tion Problem as one of finding k degree-bounded spanning trees in a complete graph that
minimize certain node distances. One could then try to obtain additional insights into
the problem by utilizing the quite significant research results on problems of constructing
degree-bounded spanning trees on (weighted) graphs. Here, studied optimization goals
include minimizing tree depth/latency/diameter [CGM83, KLS03, HA07], minimizing
maximum node degree ([GJ79] problem ND1) and tree costs [SL07] for one spanning
tree, respectively. There are no results known to the author that consider problems
where k > 1 degree-bounded spanning trees have to be found.

However, the allowance of arbitrary graphs and the introduction of edge weights
heavily change the character of the studied problems. These additions can considerably
restrict the set of possible solutions and typically the choice of the graph or weighting
determines the hardness of the problems. Hence, the studies on these problems follow
very different premises. Although, this line of research may inspire us to extend the
Failure-Stable Topology Formation Problem to consider an underlying graph, the
existing research results scarcely add to our knowledge about the problem in its current
formulation.
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This is the last chapter of this thesis. Section 7.1 summarizes and correlates the
obtained results. Furthermore, it is pointed out that the identified topology classes can
also be applied in other areas than peer-to-peer live streaming systems. Section 7.2
lists open problems and indicates possible directions of future research.

7.1. Conclusion

In this thesis, we studied how the stability of peer-to-peer live streaming systems is
influenced by their distribution topologies. In particular, we investigated properties
of distribution topologies that help minimizing the consequences of destructive events
on such systems. Furthermore, we examined to what degree these properties can be
checked or established in polynomial time.

The considered types of destructive events were attacks on and failures of peer nodes.
The consequences of both can be modeled by a removal of peers from the distribution
topology. However, they differ in the way the peer set is chosen. While the peer
selection process for failures can be seen as a random process, attacks are planned by a
malicious entity trying to maximize damage. We set a special focus on attack-stability,
but obtained results on failure-stability as well.

Most of our results were obtained by identifying and analyzing optimization problems
that reflect the considered stability aspects. The mathematical model underlying this
approach is a generalization of the model from [BSS09].

Damage Measures To quantify the consequences of attacks, we considered three
different damage measures. The LiSS-damage measure accounts for the system-wide
number of disturbed source-to-peer paths. In contrast, the LoSS- and FEC-LoSS-
damage measures count the number of nodes that receive less than a given fraction of
stripes. In that, they model the user-perceived quality of the streaming service. While
the LoSS-damage measure assumes a stream encoding based on Multiple Description
Coding, the FEC-LoSS-damage measure assumes Forward Error Correction codes.

Approximability of Attacker Problems For each of these damage measures, we inves-
tigated the computational complexity and approximability of planning resource-efficient
attacks. Given a distribution topology, certain attack parameters, and a damage
threshold, such a planning task consists in finding a corresponding attack of minimum
cardinality that creates at least the required damage. We obtained inapproximability
results relying on the assumption that P 6= NP. On input topologies having k stripes
and n peers, respectively, we proved inapproximability bounds of Θ(log k) and Θ(log n)
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for both LiSS- and LoSS-damage measure. Furthermore, we identified a logarithmic
approximation algorithm for the LiSS-problem, while for the LoSS-problem this was
only possible for restrictions to certain inputs. Considering FEC-LoSS-damage, we

could show considerably higher inapproximability bounds with factors of 2log1−o(1) Θ(k)

and 2log1−o(1) Θ(
√
n), respectively. These results demonstrate the influence of system

parameters like stripe number and stream encoding on the hardness of planning
resource-efficient attacks.

Optimally LiSS-stable Topologies We studied distribution topologies minimizing
the maximum LiSS-damage achievable by attacks of each possible cardinality. For
this, we first reviewed existing results from [BSS09]. Here, the damage sequence

(δC,ki )1≤i≤Ck was introduced together with a greedy polynomial-time attack algorithm.
On arbitrary topologies, it returns attacks X with a LiSS-damage lower bounded

by
∑min(|X|,Ck)
i=1 δC,ki . Furthermore, the Cluster Topologies were identified. On these

restrictive but simple-to-constuct topologies, the LiSS-damage of attacks is upper-
bounded by exactly the same sum over the damage sequence. Consequently, both a
damage-based characterization of optimally LiSS-stable topologies and a first subclass
of such topologies were found.

Subsequently, we studied necessary conditions on optimally LiSS-stable topologies.
Slightly strengthening these requirements, we stated a set of rules that define a subclass,
which is larger and less restrictive than the Cluster Topologies.

One of these rules required that the supply relationships between heads correspond
to optimally LiSS-stable head topologies. Therefore, we turned to study these special
topologies. For this, we developed an adapted characterization of LiSS-stability based
on dependency graphs. Additional to the necessary requirements already known, we
obtained the Stability Requirements. The identification of the Line Graph Criterion
provided us with a large and generic class of optimally LiSS-stable head topologies.
Further results allowed to efficiently recognize optimally LiSS-stable head topologies
with few stripes or small connected components in their dependency graphs.

Then, we investigated the computational complexity of deciding whether a given
distribution topology is optimally LiSS-stable. We presented a result of [Bri08] con-
firming that this problem is coNP-complete. It emphasizes the practical importance of
Cluster Topologies and rule-based topologies as large subclasses for which membership
tests are in P. Especially the latter additionally feature low requirements on peer
bandwidths and provide high flexibility of possible topology layouts. A multitude of
head topologies is available and if n� Ck, local topology decisions of a majority of
peers are not limited by the rule set. Due to this applicability, we sketched possible
heuristics to approximate both Cluster Topologies and rule-based topologies using
distributed topology management mechanisms.

Optimally LoSS-stable Topologies and Forward-Stable Topologies We studied dis-
tribution topologies minimizing the maximum LoSS-damage achievable by attacks of
each possible parameter combination. Since LoSS- and FEC-LoSS-damage measure
have equal values on topologies of depth at most 2, the obtained results are also relevant
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when FEC stream encoding is applied. In a first step, we deduced basic requirements for
optimally LoSS-stable topologies. Then, we observed that the LoSS-damage measure
can be seen as a superimposition of two independent types of damage. For practically
relevant cases where n � Ck, one of them dominates LoSS-damage. It was called
forward-damage and we focused on finding topologies minimizing this kind of damage.
Again, we identified basic requirements on such forward-stable topologies and ensured
that they are reconcilable with the observed requirements on optimally LoSS-stable
topologies.

If the found requirements are satisfied, the forward-stability of a topology is deter-
mined by the forward successor sets of its heads. In particular, there is a convenient
matrix representation of these sets. We found out that in forward-stable topologies
these matrices must be Orthogonal Arrays and specific Packing Arrays. If such a
matrix has strength t, the corresponding topology was shown to be forward-stable
against attacks where each attacked node forwards in at least one of t stripes. The
observed matrix characterization allows to draw connections with existing theory on
FEC codes. We reviewed relevant results and pointed out their importance for the
study of forward-stable topologies.

Finally, we investigated existence conditions for the required matrix types. This led
to the insight that if an efficient construction for forward-stable distribution topologies
was found, this would also solve long-standing open problems in Design and Coding
Theory. In particular, it would lead to the efficient identification of extremal parameters
of Orthogonal Arrays and would prove or disprove the MDS Conjecture.

Random-Failure-Stable Topologies We studied distribution topologies minimizing
the expected LiSS-damage, when failing sets of peers are chosen uniformly at random.
These topologies were called random-failure-stable. By analyzing the formula of
expected LiSS-damage, we obtained a sufficient requirement for these topologies. It
confirms the frequently applied intuitive approach of building topologies that minimize
average node depth. For classes of multitree topologies, we pointed out that the existence
of random-failure-stable topologies is not guaranteed. Furthermore, we showed that if
they exist, the problem of finding random-failure-stable topologies is NP-complete.

Conditionality of Different Stability Goals Recapitulating the requirements for each
considered stability goal, we can investigate whether there are goals that imply or
contradict each other. However, this is complicated by the fact that our knowledge
about optimal topologies differs for each different stability goal. Furthermore, we
considered different bandwidth restrictions for the study of attack- and failure-stable
topologies, respectively.

Generally, we could observe that all studied types of stable topologies need to utilize
the available source bandwidth completely.

However, the stable topologies for each stability goal have unqiue combinations of
additional properties. All attack-stable (i.e., optimally LiSS-stable, optimally LoSS-
stable, or forward-stable) topologies profit from the use of a maximum number of disjoint
heads. Furthermore, they set upper bounds on the successor numbers of their peers.
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⊆ opt. LiSS opt. LoSS forward random-failure

opt. LiSS X ×1 ×1 ×2

opt. LoSS ? X ? ×2

forward ×3 ? X ×2

random-failure ×4 ×4 ×4 X

Remarks:
1 No requirements on successor set intersections.
2 Average node depth minimization not required.
3 No requirements on successor relationships between heads.
4 No limits on successor numbers.

Figure 7.1.: Subclass relationships between classes of stable topologies.

Again, these particularly apply to heads. Optimally LiSS-stable topologies additionally
restrict the supply relationships between their heads to certain patterns. Optimally
LoSS-stable topologies prohibit unidirectional successor relationships between the
same pair of nodes in more than one stripe. Forward-stable topologies even strengthen
this requirement by demanding, for each peer, empty forward successor sets in all
but one stripe. Both of the latter types of stable topologies additionally depend on
specific intersection structures of the forward successor sets of their peers. Finally,
random-failure-stable topologies depend on a strict minimization of average node depth.

Consequently, the existence of actual subclass relationships between most of the
studied classes of stable topologies can be denied (see Figure 7.1).

An exception are several unknown relationships of the optimally LoSS-stable topolo-
gies. This is due to the fact, that the exact requirements for such topologies are
yet unknown. We demonstrated that the general layout of optimally LoSS-stable
topologies with n� Ck nodes must be very similar to that of forward-stable topologies.
Furthermore, we have shown that upper-bounding achievable LiSS-damage also results
in upper bounds on LoSS-damage. However, it is still possible that there are optimally
LoSS-stable topologies (especially small ones) that are neither optimally LiSS-stable
nor optimally forward-stable.

Compatibility of Different Stability Goals There are only few cases in which we can
show that the intersections of different classes of stable topologies are empty.

One of these cases was given in Section 5.4. There, we demonstrated the existence
of parameters for a topology class T(n,C, k) enforcing that there is neither a Cluster
Topology nor a rule-based topology in T(n,C, k) that is forward-stable. Furthermore,
Cluster Topologies often conflict with optimal LoSS-stability. For rule-based topologies,
this is still unknown.

Another case can be observed for intersections between attack-stable and random-
failure-stable topology classes. Such results must be interpreted with care, since
the latter are defined on topology classes T(n, c, k) that allow arbitrary bandwidth
restrictions for peers. In particular, it is possible to find bandwidth-restricted topology

156



7.1. Conclusion

T
s

1

2

3 4

5

6 7

8

9

10 11

12

13 14

(a) Attack-stable topology.
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(b) Random-failure-stable topology.

Figure 7.2.: An attack-stable topology T vs. a random-failure-stable topology C in
T(14, c, 1) with c(s) = 2, c(1) = 10 and c(v) = 2 for v ∈ [2, 14].

classes T(n, c, k) in which attack-stable topologies have properties different to the ones
identified for our standard class T(n,C, k). In other bandwidth-restricted classes, our
familiar attack-stable topologies exist, but there are no random-failure-stable topologies
(see the example in Figure 6.1, where topology T1 is attack-stable).

However, the optimization of attack-stability and failure-stability can also conflict if
optima for both stability goals exist. A corresponding example is given in Figure 7.2. In
the considered topology class, the limitation of successor numbers to δC,k1 = 7 impedes
a minimization of average node depth and vice versa.

Relevance and Further Applicability of Results The identified requirements on stable
distribution topologies give mathematically sound guidelines for the topology manage-
ment of peer-to-peer live streaming systems. The demonstrated limitations, both for
attackers and the efficient construction of LoSS-, forward-, and random-failure-stable
topologies, can support the evaluation of trade-offs between threat and costs of safe-
guarding. Consequently, they help in choosing appropriate stability goals that match a
streaming system’s intended use.

The studied optimization problems provide practically motivated representatives from
different complexity and approximability classes. Furthermore, we found previously
unknown applications of Design and Coding Theory.

The applicability of the identified stable distribution topologies is not restricted to
peer-to-peer live streaming systems. Instead, such stable topologies are needed in other
situations as well. Examples can be found in technically different implementations of
information multicast, but also in the design of critical physical infrastructures (e.g.,
for the distribution of oil, gas, and electric power).

Furthermore, our damage measures remain relevant when information shall not be
distributed but aggregated. This leads to possible applications in sensor networks
[ASSC02]. In these systems, a large number of sensor nodes individually generate data
which is decentrally aggregated and forwarded to a central sink. Depending on the
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stability requirements, environmental conditions and type of sensor data, LiSS-, LoSS-,
or random-failure-stability can be desirable properties of the emerging communication
topologies.

7.2. Outlook

Our research can be continued in several directions.

Improved Analysis of the Studied Problems The results on a number of problems
we have studied in this thesis can be extended even further.

When considering attacker problems, the identified approximability bounds for
the LoSS- and the FEC-LoSS-problem are not yet tight. Here, the identification
of improved bounds would give a more exact impression of the influence of stream
encoding on the hardness of planning resource-efficient attacks.

In our study of optimally LiSS-stable topologies, we could not completely resolve the
computational complexity of the LiSS-Stability Decision Problem for head topologies.
However, the head topologies for which this problem is not yet known to be in P have
very specific properties. A further result in this direction promises to increase the
number of head topologies applicable in rule-based optimally LiSS-stable topologies.

Additionally, more detailed requirements on optimally LoSS-stable topologies should
be investigated. While the obtained results already provide a good approximation when
topologies possess a large number of peers, our knowledge about optimally LoSS-stable
head topologies still needs to be improved.

Distributed Construction of Attack-Stable Topologies Another task that is con-
stantly present in the study of stable distribution topologies is the research for suitable
distributed mechanisms to implement our theoretical results in practical systems. We
have seen that there are already peer-to-peer live streaming systems aiming to form
optimally LiSS-stable topologies [BSS09, Fis12]. Their approaches are heuristical but
practical. A logical next step would be the integration of additional mechanisms to
improve the LoSS- or forward-stability of these systems. First ideas were given in
Section 5.4. However, this is an ambitious project since constructing optimal topologies
involves finding Orthogonal Arrays of maximum strength. As we have seen, even an
efficient, centralized approach solving this subproblem is currently unknown.

Model Extensions Finally, it is possible to analyze extensions of the models used in
this thesis. Such new models could reflect selected aspects more accurately or integrate
additional features of peer-to-peer live streaming systems.

First steps in both directions have already been made. The model of [Hol10]
explicitely focused on the consequences of bandwidth-exhaustion attacks. In particular,
attacked nodes were no longer removed from the topology but the loss probability of
packets traversing them was increased depending on the load situation on their access
link. While this approach revealed interesting dynamic effects, the highly increased
complexity led to difficulties in its analysis.
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Another approach was followed by the author in [FGKS11]. Our model was general-
ized to fit for IPTV systems distributing a large number of stripes from which peers
can choose to receive arbitrary subsets. Thus, each stripe can have a different set of
receiving nodes. This makes the construction of attack-stable distribution topologies
even more complex. The publication provided efficient methods to find topologies
reducing maximum LiSS-damage to values near the possible minimum.

Further extensions of our model could consider peer-to-peer live streaming systems
following a hybrid instead of push-based approach (cmp. Subsection 2.1.3). In particular,
it would be possible to generalize our stripe trees into directed acyclic graphs. Then, a
peer v only loses a stripe if all s→ v-paths in the corresponding graph fail. A problem
of such systems is that bandwidth must be reserved for the additional links. This model
would allow to study possible stability gains of such hybrid topologies and investigate
bandwidth-efficient implementations.

It is also possible to study concepts of transitive damage. Extending the LoSS-
and FEC-LoSS-damage measures, such approaches take into account that damaged
nodes are highly motivated to leave the streaming system. This may lead to further
disturbances. The consideration of such transitive damage could lead to additional
requirements on stable topologies. For example, they could profit from special head
topologies or an increased fraction of nodes having nearly the same depth in all stripe
trees.

These thoughts and further results in this thesis show that the stability optimization
of distribution topologies often leads to conflicts between different notions of stability.
Furthermore, in practical applications, additional requirements are posed by technical
constraints and efficiency considerations. However, this multiplicity of competing
demands does not question the usefulness of our results. In contrast, to be able to
find acceptable trade-offs, we must know how the realization of each stability goal
is influenced by the properties of a topology. Thus, the study of stable distribution
topologies and their characteristics is necessary. Despite possible doubts about their
applicability in practical situations, they lead the way towards more resilient and
dependable peer-to-peer live streaming systems.

“Only he can make use of favorable winds, who knows where he wants to go to.”

— Seneca the Younger
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A. Fundamental Inequalities

This appendix lists fundamental inequalities used in the proofs of this thesis.

Lemma A.0.1 [BSS09]
Let (xi)1≤i≤k and (yi)1≤i≤l be two non-increasing sequences of natural numbers, and
x0, y0 ∈ N, such that

• x0 ≥ y0,

• k ≥ l,

•
∑k
i=0 xi ≥

∑l
i=0 yi = Y , and

• yi ∈ {b(Y − y0)/kc, d(Y − y0)/ke}.

For 0 ≤ h ≤ l, it holds that
k−h∑
i=0

xi ≥
l−h∑
i=0

yi. (A.1)

Proof. [BSS09] First, assume that k = l. Then, it holds that 0 ≤ h ≤ k. For h = k,
Inequality (A.1) is true since x0 ≥ y0. For h < k, we use induction and assume that∑k−h−1
i=0 xi ≥

∑l−h−1
i=0 yi holds.

Now, if we had
∑k−h
i=0 xi <

∑l−h
i=0 yi, this would imply xk−h < yl−h. By the third

condition, we then have xk−h ≤ b(Y − y0)/kc and obtain

k∑
i=0

xi ≤
k−h∑
i=0

xi + h

⌊
Y − y0

k

⌋
<

l−h∑
i=0

yi +

l∑
i=l−h+1

yi = Y. (A.2)

However, this contradicts the second condition.
If k > l, define x̂0 :=

∑k−l−1
i=0 xi and x̂i := xi+(k−l) for 1 ≤ i ≤ l. It holds that

x̂0 ≥ x0 ≥ y0. Then, the proposed inequality follows from the case k = l.

Lemma A.0.2 Operations on Integer Partitions
Let S, k ∈ N be given and let t1, . . . , tk ∈ [0, S] be an integer partition of S, i.e.∑k
i=1 ti = S. The product

∏k
i=1 ti is maximized and the sum

∑k
i=1

(
ti
2

)
is minimized,

if it holds that

∀i ∈ [k] : ti ∈
[⌈
S

k

⌉
,

⌊
S

k

⌋]
. (A.3)
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Proof. Let t1, . . . , tk be an arbitrary integer partition of S. If there are a, b ∈ [k] with
tb − ta ≥ 2, then set t′a := ta + 1 and t′b := tb − 1. Substituting ta, tb by t′a, t

′
b will

increase the product value:

∏
i∈[k]

ti <
∏
i∈[k]

ti +

 ∏
i∈[k]\{a,b}

ti

 (tb − ta − 1) (A.4)

=

 ∏
i∈[k]\{a,b}

ti

 · (tatb + tb − ta − 1) (A.5)

=

 ∏
i∈[k]\{a,b}

ti

 · (t′a)(t′b) (A.6)

Furthermore, it holds that∑
i∈[k]

(
ti
2

)
=
ta(ta − 1)

2
+
tb(tb − 1)

2
+

∑
i∈[k]\{a,b}

(
ti
2

)
(A.7)

>
ta(ta − 1) + tb(tb − 1)− 2(tb − ta − 1)

2
+

∑
i∈[k]\{a,b}

(
ti
2

)
(A.8)

=
(ta + 1)(ta)

2
+

(tb − 1)(tb − 2)

2
+

∑
i∈[k]\{a,b}

(
ti
2

)
(A.9)

=

(
t′a
2

)
+

(
t′b
2

)
+

∑
i∈[k]\{a,b}

(
ti
2

)
(A.10)

The transformation assures that ta < t′a ≤ t′b < tb. In particular, it decreases
max(|ta − S/k|, |tb − S/k|) with each step. Iterating this process constantly increases
and decreases the value of the considered product and sum, respectively. The process
stops as soon as Property (A.3) is reached.

Lemma A.0.3 Sums over Ordered Partitions
Let k ∈ N and t1, . . . , tk, S ∈ R+ with t1 ≤ t2 ≤ . . . ≤ tk and

∑
i∈[k] ti = S be given.

It holds that

∀z ∈ [k] :

z∑
i=1

ti ≤
z

k
S.

Proof. Fix an arbitrary z ∈ [k]. If tz ≤ S
k , we clearly have

∑z
i=1 ti ≤ z

S
k .

Otherwise, it holds that tz+1, . . . , tk ≥ S
k . This leads to

z∑
i=1

ti = S −
k∑

i=z+1

ti ≤ S − (k − z)S
k

=
z

k
S. (A.11)
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B. The Distance Distribution of MDS
Codes

The available literature on MDS codes (e.g., [MS93, Bie05, Rot06, BBF+06, PWB11])
has a heavy focus on linear MDS codes. Due to this reason, all sources known to the
author only cover the distance distribution for this subclass. For the use in Section 5.3.3,
in this appendix we show that the distance distribution for linear MDS codes actually
holds for all MDS codes.

The following is a well-known result, e.g., it can be obtained from [MS93, Theo-
rem 11.6] and Corollary 5.3.30. Let M be a linear, C-ary MDS code of length k and
dimension t. Such a code has minimum distance d = k − t+ 1. For every v ∈M , the
distance distribution dC,k,t(v) of v in M is given by

dC,k,t(v)i =


1 , if i = 0

0 , if 0 < i < k − t+ 1(
k
i

)∑i−d
r=0(−1)r

(
i
r

)
(Ci−d+1−r − 1) , if k − t+ 1 ≤ i ≤ k.

(B.1)

We show that this distance distribution holds for non-linear MDS codes as well.

Lemma B.0.4
Every C-ary MDS code M of Ct codewords and length k is distance-invariant and
the distance distribution for every v ∈M is dC,k,t(v).

Proof. Due to the Lemmata 5.3.31 and 5.3.35, M has dual distance d⊥ = t+ 1. Since
M has minimum distance d = k − t+ 1, for every v ∈ M , the distance distribution
d(v) in M has non-zero entries for at most t distances greater 0. Since this number is
smaller than d⊥, according to [MS93, Theorem 6.6], M is distance-invariant.

Now, we show the following claim.

Claim B.0.5
Let M be given from Lemma B.0.4. For any v ∈M , the maximum possible number
of codewords of M that are in distance i from v is dC,k,t(v)i.

Proof. The proof is inspired by the proofs on the weight distribution of linear MDS
codes in [PWB11, Chapter 4.4].

Since M is distance-invariant, fix an arbitrary v ∈M . For I ⊆ [k] with i = |I| and
i ∈ [k], the maximum number of codewords in M \ {v} that coincide with v in all
positions I is BI := dCt−ie − 1:
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• Codewords coinciding in at least t positions can have at most distance k − t < d.
However, M has minimum distance d = k − t+ 1. We obtain BI = 0 for i ≥ t.

• Since M has dual distance d⊥ = t+ 1, due to Lemma 5.3.31, its matrix repre-
sentation is an OA(Ct, k, C, t) with index 1. Therefore, for every i < t, it is an
OA(Ct, k, C, i) of index Ct−i and there are exactly Ct−i rows of M with the same
combination of letters in the columns I. Subtracting 1 for v itself gives BI .

We sum up BI for all I ⊆ [k] with i = |I| as Bi :=
(
k
i

)
(dCt−ie − 1). It holds that

Bi =

k−i∑
j=k−t+1

(
k − j
i

)
Aj , (B.2)

where Aj is the maximum possible number of codewords of M in distance j from v:

• Equation (B.2) is true for i ≥ t, since in this case the sum will be empty.

• For i < t, every existing w ∈M with a distance j ≤ k−i from v has to coincide on
k−j ≥ i positions with v. Thus, it is counted

(
k−j
i

)
times (once for every possible

choice of I as a subset of their coinciding positions) for Bi. The maximality of
the Aj follows from the maximality of Bi.

The Aj will be zero for j < d = k − t + 1 and the remaining Aj can be computed
using Equation (B.2). They exactly resemble the corresponding entries in the distance-
(and weight-) distribution of a linear MDS code with length k and dimension t (cmp.
Equation B.1):

Aj =

{(
k
j

)∑j−d
r=0(−1)r

(
j
r

)
(Cj−d+1−r − 1) , if d ≤ j

0 , if 1 ≤ j < d
(B.3)

The entries of dC,k,t(·) sum up to Ct. Hence, due to Claim B.0.5, each v ∈M must
have distance distribution dC,k,t(v). Otherwise, M had less than Ct codewords.
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C. Index of Notation

Numbers, Sets & Concepts

[a, b] integer interval {a, a+ 1, . . . , b} 22

[a] integer interval [1, a] 22

H(n) n-th harmonic number 43

x,v vectors 111

P(X) power set of X 37

RO(x, y) approximation ratio 38

(Multi-)Graphs

u, v, w nodes 23

X,Y, Z sets of nodes (also: attacks) 23

mG(X,Y ) multiplicity 23

mG(v) multiplicity of node v 23

G[X] submultigraph induced by X 23

eG(X) number of edges in G[X] 23

Distribution Topologies

T , C,D distribution topologies 23

T(n, c, k) class of bandwidth-restricted distribution topologies 27

T(n,C, k) class of source-bandwidth-restricted distribution topologies 27

dT (v) depth of node v in tree T 24
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[Rö10] Johannes Röckert. Optimierung von Peer-To-Peer Streamingtopologien
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